亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Fluid-structure systems occur in a range of scientific and engineering applications. The immersed boundary(IB) method is a widely recognized and effective modeling paradigm for simulating fluid-structure interaction(FSI) in such systems, but a difficulty of the IB formulation is that the pressure and viscous stress are generally discontinuous at the interface. The conventional IB method regularizes these discontinuities, which typically yields low-order accuracy at these interfaces. The immersed interface method(IIM) is an IB-like approach to FSI that sharply imposes stress jump conditions, enabling higher-order accuracy, but prior applications of the IIM have been largely restricted to methods that rely on smooth representations of the interface geometry. This paper introduces an IIM that uses only a C0 representation of the interface,such as those provided by standard nodal Lagrangian FE methods. Verification examples for models with prescribed motion demonstrate that the method sharply resolves stress discontinuities along the IB while avoiding the need for analytic information of the interface geometry. We demonstrate that only the lowest-order jump conditions for the pressure and velocity gradient are required to realize global 2nd-order accuracy. Specifically,we show 2nd-order global convergence rate along with nearly 2nd-order local convergence in the Eulerian velocity, and between 1st-and 2nd-order global convergence rates along with 1st-order local convergence for the Eulerian pressure. We also show 2nd-order local convergence in the interfacial displacement and velocity along with 1st-order local convergence in the fluid traction. As a demonstration of the method's ability to tackle complex geometries,this approach is also used to simulate flow in an anatomical model of the inferior vena cava.

相關內容

In its simplest form, the chemostat consists of microorganisms or cells which grow continually in a specific phase of growth while competing for a single limiting nutrient. Under certain conditions on the cells' growth rate, substrate concentration, and dilution rate, the theory predicts and numerical experiments confirm that a periodically operated chemostat exhibits an "over-yielding" state in which the performance becomes higher than that at the steady-state operation. In this paper we show that an optimal control policy for maximizing the chemostat performance can be accurately and efficiently derived numerically using a novel class of integral-pseudospectral methods and adaptive h-integral-pseudospectral methods composed through a predictor-corrector algorithm. Some new formulas for the construction of Fourier pseudospectral integration matrices and barycentric shifted Gegenbauer quadratures are derived. A rigorous study of the errors and convergence rates of shifted Gegenbauer quadratures as well as the truncated Fourier series, interpolation operators, and integration operators for nonsmooth and generally T-periodic functions is presented. We introduce also a novel adaptive scheme for detecting jump discontinuities and reconstructing a discontinuous function from the pseudospectral data. An extensive set of numerical simulations is presented to support the derived theoretical foundations.

We propose a unified framework for time-varying convex optimization based on the prediction-correction paradigm, both in the primal and dual spaces. In this framework, a continuously varying optimization problem is sampled at fixed intervals, and each problem is approximately solved with a primal or dual correction step. The solution method is warm-started with the output of a prediction step, which solves an approximation of a future problem using past information. Prediction approaches are studied and compared under different sets of assumptions. Examples of algorithms covered by this framework are time-varying versions of the gradient method, splitting methods, and the celebrated alternating direction method of multipliers (ADMM).

For capillary driven flow the interface curvature is essential in the modelling of surface tension via the imposition of the Young--Laplace jump condition. We show that traditional geometric volume of fluid (VOF) methods, that are based on a piecewise linear approximation of the interface, do not lead to an interface curvature which is convergent under mesh refinement in time-dependent problems. Instead, we propose to use a piecewise parabolic approximation of the interface, resulting in a class of piecewise parabolic interface calculation (PPIC) methods. In particular, we introduce the parabolic LVIRA and MOF methods, PLVIRA and PMOF, respectively. We show that a Lagrangian remapping method is sufficiently accurate for the advection of such a parabolic interface. It is numerically demonstrated that the newly proposed PPIC methods result in an increase of reconstruction accuracy by one order, convergence of the interface curvature in time-dependent advection problems and Weber number independent convergence of a droplet translation problem, where the advection method is coupled to a two-phase Navier--Stokes solver. The PLVIRA method is applied to the simulation of a 2D rising bubble, which shows good agreement to a reference solution.

The recent state of the art on monocular 3D face reconstruction from image data has made some impressive advancements, thanks to the advent of Deep Learning. However, it has mostly focused on input coming from a single RGB image, overlooking the following important factors: a) Nowadays, the vast majority of facial image data of interest do not originate from single images but rather from videos, which contain rich dynamic information. b) Furthermore, these videos typically capture individuals in some form of verbal communication (public talks, teleconferences, audiovisual human-computer interactions, interviews, monologues/dialogues in movies, etc). When existing 3D face reconstruction methods are applied in such videos, the artifacts in the reconstruction of the shape and motion of the mouth area are often severe, since they do not match well with the speech audio. To overcome the aforementioned limitations, we present the first method for visual speech-aware perceptual reconstruction of 3D mouth expressions. We do this by proposing a "lipread" loss, which guides the fitting process so that the elicited perception from the 3D reconstructed talking head resembles that of the original video footage. We demonstrate that, interestingly, the lipread loss is better suited for 3D reconstruction of mouth movements compared to traditional landmark losses, and even direct 3D supervision. Furthermore, the devised method does not rely on any text transcriptions or corresponding audio, rendering it ideal for training in unlabeled datasets. We verify the efficiency of our method through exhaustive objective evaluations on three large-scale datasets, as well as subjective evaluation with two web-based user studies.

The Heuristic Rating Estimation Method enables decision-makers to decide based on existing ranking data and expert comparisons. In this approach, the ranking values of selected alternatives are known in advance, while these values have to be calculated for the remaining ones. Their calculation can be performed using either an additive or a multiplicative method. Both methods assumed that the pairwise comparison sets involved in the computation were complete. In this paper, we show how these algorithms can be extended so that the experts do not need to compare all alternatives pairwise. Thanks to the shortening of the work of experts, the presented, improved methods will reduce the costs of the decision-making procedure and facilitate and shorten the stage of collecting decision-making data.

In this paper, a meshfree method using the deep neural network (DNN) approach is developed for solving two kinds of dynamic two-phase interface problems governed by different dynamic partial differential equations on either side of the stationary interface with the jump and high-contrast coefficients. The first type of two-phase interface problem to be studied is the fluid-fluid (two-phase flow) interface problem modeled by Navier-Stokes equations with high-contrast physical parameters across the interface. The second one belongs to fluid-structure interaction (FSI) problems modeled by Navier-Stokes equations on one side of the interface and the structural equation on the other side of the interface, both the fluid and the structure interact with each other via the kinematic- and the dynamic interface conditions across the interface. The DNN/meshfree method is respectively developed for the above two-phase interface problems by representing solutions of PDEs using the DNNs' structure and reformulating the dynamic interface problem as a least-squares minimization problem based upon a space-time sampling point set. Approximation error analyses are also carried out for each kind of interface problem, which reveals an intrinsic strategy about how to efficiently build a sampling-point training dataset to obtain a more accurate DNNs' approximation. In addition, compared with traditional discretization approaches, the proposed DNN/meshfree method and its error analysis technique can be smoothly extended to many other dynamic interface problems with fixed interfaces. Numerical experiments are conducted to illustrate the accuracies of the proposed DNN/meshfree method for the presented two-phase interface problems. Theoretical results are validated to some extent through three numerical examples.

Visual recognition is currently one of the most important and active research areas in computer vision, pattern recognition, and even the general field of artificial intelligence. It has great fundamental importance and strong industrial needs. Deep neural networks (DNNs) have largely boosted their performances on many concrete tasks, with the help of large amounts of training data and new powerful computation resources. Though recognition accuracy is usually the first concern for new progresses, efficiency is actually rather important and sometimes critical for both academic research and industrial applications. Moreover, insightful views on the opportunities and challenges of efficiency are also highly required for the entire community. While general surveys on the efficiency issue of DNNs have been done from various perspectives, as far as we are aware, scarcely any of them focused on visual recognition systematically, and thus it is unclear which progresses are applicable to it and what else should be concerned. In this paper, we present the review of the recent advances with our suggestions on the new possible directions towards improving the efficiency of DNN-related visual recognition approaches. We investigate not only from the model but also the data point of view (which is not the case in existing surveys), and focus on three most studied data types (images, videos and points). This paper attempts to provide a systematic summary via a comprehensive survey which can serve as a valuable reference and inspire both researchers and practitioners who work on visual recognition problems.

As soon as abstract mathematical computations were adapted to computation on digital computers, the problem of efficient representation, manipulation, and communication of the numerical values in those computations arose. Strongly related to the problem of numerical representation is the problem of quantization: in what manner should a set of continuous real-valued numbers be distributed over a fixed discrete set of numbers to minimize the number of bits required and also to maximize the accuracy of the attendant computations? This perennial problem of quantization is particularly relevant whenever memory and/or computational resources are severely restricted, and it has come to the forefront in recent years due to the remarkable performance of Neural Network models in computer vision, natural language processing, and related areas. Moving from floating-point representations to low-precision fixed integer values represented in four bits or less holds the potential to reduce the memory footprint and latency by a factor of 16x; and, in fact, reductions of 4x to 8x are often realized in practice in these applications. Thus, it is not surprising that quantization has emerged recently as an important and very active sub-area of research in the efficient implementation of computations associated with Neural Networks. In this article, we survey approaches to the problem of quantizing the numerical values in deep Neural Network computations, covering the advantages/disadvantages of current methods. With this survey and its organization, we hope to have presented a useful snapshot of the current research in quantization for Neural Networks and to have given an intelligent organization to ease the evaluation of future research in this area.

Graph Neural Networks (GNNs) have received considerable attention on graph-structured data learning for a wide variety of tasks. The well-designed propagation mechanism which has been demonstrated effective is the most fundamental part of GNNs. Although most of GNNs basically follow a message passing manner, litter effort has been made to discover and analyze their essential relations. In this paper, we establish a surprising connection between different propagation mechanisms with a unified optimization problem, showing that despite the proliferation of various GNNs, in fact, their proposed propagation mechanisms are the optimal solution optimizing a feature fitting function over a wide class of graph kernels with a graph regularization term. Our proposed unified optimization framework, summarizing the commonalities between several of the most representative GNNs, not only provides a macroscopic view on surveying the relations between different GNNs, but also further opens up new opportunities for flexibly designing new GNNs. With the proposed framework, we discover that existing works usually utilize naive graph convolutional kernels for feature fitting function, and we further develop two novel objective functions considering adjustable graph kernels showing low-pass or high-pass filtering capabilities respectively. Moreover, we provide the convergence proofs and expressive power comparisons for the proposed models. Extensive experiments on benchmark datasets clearly show that the proposed GNNs not only outperform the state-of-the-art methods but also have good ability to alleviate over-smoothing, and further verify the feasibility for designing GNNs with our unified optimization framework.

Reinforcement learning is one of the core components in designing an artificial intelligent system emphasizing real-time response. Reinforcement learning influences the system to take actions within an arbitrary environment either having previous knowledge about the environment model or not. In this paper, we present a comprehensive study on Reinforcement Learning focusing on various dimensions including challenges, the recent development of different state-of-the-art techniques, and future directions. The fundamental objective of this paper is to provide a framework for the presentation of available methods of reinforcement learning that is informative enough and simple to follow for the new researchers and academics in this domain considering the latest concerns. First, we illustrated the core techniques of reinforcement learning in an easily understandable and comparable way. Finally, we analyzed and depicted the recent developments in reinforcement learning approaches. My analysis pointed out that most of the models focused on tuning policy values rather than tuning other things in a particular state of reasoning.

北京阿比特科技有限公司