亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

An increasing number of regulations propose the notion of AI audits as an enforcement mechanism for achieving transparency and accountability for AI systems. Despite some converging norms around various forms of AI auditing, auditing for the purpose of compliance and assurance currently have little to no agreed upon practices, procedures, taxonomies, and standards. We propose the criterion audit as an operationalizable compliance and assurance external audit framework. We model elements of this approach after financial auditing practices, and argue that AI audits should similarly provide assurance to their stakeholders about AI organizations' ability to govern their algorithms in ways that mitigate harms and uphold human values. We discuss the necessary conditions for the criterion audit, and provide a procedural blueprint for performing an audit engagement in practice. We illustrate how this framework can be adapted to current regulations by deriving the criteria on which bias audits for hiring algorithms can be performed, as required by the recently effective New York City Local Law 144 of 2021. We conclude by offering critical discussion on the benefits, inherent limitations, and implementation challenges of applying practices of the more mature financial auditing industry to AI auditing where robust guardrails against quality assurance issues are only starting to emerge. Our discussion as informed by experiences in performing these audits in practice highlights the critical role that an audit ecosystem plays in ensuring the effectiveness of such methodology.

相關內容

Dialogue state tracking (DST) aims to record user queries and goals during a conversational interaction achieved by maintaining a predefined set of slots and their corresponding values. Current approaches decide slot values opaquely, while humans usually adopt a more deliberate approach by collecting information from relevant dialogue turns and then reasoning the appropriate values. In this work, we focus on the steps needed to figure out slot values by proposing a model named Chain-of-Thought-Explanation (CoTE) for the DST task. CoTE, which is built on the generative DST framework, is designed to create detailed explanations step by step after determining the slot values. This process leads to more accurate and reliable slot values. More-over, to improve the reasoning ability of the CoTE, we further construct more fluent and high-quality explanations with automatic paraphrasing, leading the method CoTE-refined. Experimental results on three widely recognized DST benchmarks-MultiWOZ 2.2, WoZ 2.0, and M2M-demonstrate the remarkable effectiveness of the CoTE. Furthermore, through a meticulous fine-grained analysis, we observe significant benefits of our CoTE on samples characterized by longer dialogue turns, user responses, and reasoning steps.

Quantum Relative Entropy (QRE) programming is a recently popular and challenging class of convex optimization problems with significant applications in quantum computing and quantum information theory. We are interested in modern interior point (IP) methods based on optimal self-concordant barriers for the QRE cone. A range of theoretical and numerical challenges associated with such barrier functions and the QRE cones have hindered the scalability of IP methods. To address these challenges, we propose a series of numerical and linear algebraic techniques and heuristics aimed at enhancing the efficiency of gradient and Hessian computations for the self-concordant barrier function, solving linear systems, and performing matrix-vector products. We also introduce and deliberate about some interesting concepts related to QRE such as symmetric quantum relative entropy (SQRE). We also introduce a two-phase method for performing facial reduction that can significantly improve the performance of QRE programming. Our new techniques have been implemented in the latest version (DDS 2.2) of the software package DDS. In addition to handling QRE constraints, DDS accepts any combination of several other conic and non-conic convex constraints. Our comprehensive numerical experiments encompass several parts including 1) a comparison of DDS 2.2 with Hypatia for the nearest correlation matrix problem, 2) using DDS for combining QRE constraints with various other constraint types, and 3) calculating the key rate for quantum key distribution (QKD) channels and presenting results for several QKD protocols.

Augmented Reality (AR) provides a safe and low-cost option for hazardous safety training that allows for the visualization of aspects that may be invisible, such as radiation. Effectively visually communicating such threats in the environment around the user is not straightforward. This work describes visually encoding radiation using the spatial awareness mesh of an AR Head Mounted Display. We leverage the AR device's GPUs to develop a real time solution that accumulates multiple dynamic sources and uses stencils to prevent an environment being over saturated with a visualization, as well as supporting the encoding of direction explicitly in the visualization. We perform a user study (25 participants) of different visualizations and obtain user feedback. Results show that there are complex interactions and while no visual representation was statistically superior or inferior, user opinions vary widely. We also discuss the evaluation approaches and provide recommendations.

In general, diffusion model-based MRI reconstruction methods incrementally remove artificially added noise while imposing data consistency to reconstruct the underlying images. However, real-world MRI acquisitions already contain inherent noise due to thermal fluctuations. This phenomenon is particularly notable when using ultra-fast, high-resolution imaging sequences for advanced research, or using low-field systems favored by low- and middle-income countries. These common scenarios can lead to sub-optimal performance or complete failure of existing diffusion model-based reconstruction techniques. Specifically, as the artificially added noise is gradually removed, the inherent MRI noise becomes increasingly pronounced, making the actual noise level inconsistent with the predefined denoising schedule and consequently inaccurate image reconstruction. To tackle this problem, we propose a posterior sampling strategy with a novel NoIse Level Adaptive Data Consistency (Nila-DC) operation. Extensive experiments are conducted on two public datasets and an in-house clinical dataset with field strength ranging from 0.3T to 3T, showing that our method surpasses the state-of-the-art MRI reconstruction methods, and is highly robust against various noise levels. The code will be released after review.

Growing concerns about safety and alignment of AI systems highlight the importance of embedding moral capabilities in artificial agents. A promising solution is the use of learning from experience, i.e., Reinforcement Learning. In multi-agent (social) environments, complex population-level phenomena may emerge from interactions between individual learning agents. Many of the existing studies rely on simulated social dilemma environments to study the interactions of independent learning agents. However, they tend to ignore the moral heterogeneity that is likely to be present in societies of agents in practice. For example, at different points in time a single learning agent may face opponents who are consequentialist (i.e., caring about maximizing some outcome over time) or norm-based (i.e., focusing on conforming to a specific norm here and now). The extent to which agents' co-development may be impacted by such moral heterogeneity in populations is not well understood. In this paper, we present a study of the learning dynamics of morally heterogeneous populations interacting in a social dilemma setting. Using a Prisoner's Dilemma environment with a partner selection mechanism, we investigate the extent to which the prevalence of diverse moral agents in populations affects individual agents' learning behaviors and emergent population-level outcomes. We observe several types of non-trivial interactions between pro-social and anti-social agents, and find that certain classes of moral agents are able to steer selfish agents towards more cooperative behavior.

Intelligent transportation systems play a crucial role in modern traffic management and optimization, greatly improving traffic efficiency and safety. With the rapid development of generative artificial intelligence (Generative AI) technologies in the fields of image generation and natural language processing, generative AI has also played a crucial role in addressing key issues in intelligent transportation systems, such as data sparsity, difficulty in observing abnormal scenarios, and in modeling data uncertainty. In this review, we systematically investigate the relevant literature on generative AI techniques in addressing key issues in different types of tasks in intelligent transportation systems. First, we introduce the principles of different generative AI techniques, and their potential applications. Then, we classify tasks in intelligent transportation systems into four types: traffic perception, traffic prediction, traffic simulation, and traffic decision-making. We systematically illustrate how generative AI techniques addresses key issues in these four different types of tasks. Finally, we summarize the challenges faced in applying generative AI to intelligent transportation systems, and discuss future research directions based on different application scenarios.

As artificial intelligence (AI) models continue to scale up, they are becoming more capable and integrated into various forms of decision-making systems. For models involved in moral decision-making, also known as artificial moral agents (AMA), interpretability provides a way to trust and understand the agent's internal reasoning mechanisms for effective use and error correction. In this paper, we provide an overview of this rapidly-evolving sub-field of AI interpretability, introduce the concept of the Minimum Level of Interpretability (MLI) and recommend an MLI for various types of agents, to aid their safe deployment in real-world settings.

When is heterogeneity in the composition of an autonomous robotic team beneficial and when is it detrimental? We investigate and answer this question in the context of a minimally viable model that examines the role of heterogeneous speeds in perimeter defense problems, where defenders share a total allocated speed budget. We consider two distinct problem settings and develop strategies based on dynamic programming and on local interaction rules. We present a theoretical analysis of both approaches and our results are extensively validated using simulations. Interestingly, our results demonstrate that the viability of heterogeneous teams depends on the amount of information available to the defenders. Moreover, our results suggest a universality property: across a wide range of problem parameters the optimal ratio of the speeds of the defenders remains nearly constant.

The dominating NLP paradigm of training a strong neural predictor to perform one task on a specific dataset has led to state-of-the-art performance in a variety of applications (eg. sentiment classification, span-prediction based question answering or machine translation). However, it builds upon the assumption that the data distribution is stationary, ie. that the data is sampled from a fixed distribution both at training and test time. This way of training is inconsistent with how we as humans are able to learn from and operate within a constantly changing stream of information. Moreover, it is ill-adapted to real-world use cases where the data distribution is expected to shift over the course of a model's lifetime. The first goal of this thesis is to characterize the different forms this shift can take in the context of natural language processing, and propose benchmarks and evaluation metrics to measure its effect on current deep learning architectures. We then proceed to take steps to mitigate the effect of distributional shift on NLP models. To this end, we develop methods based on parametric reformulations of the distributionally robust optimization framework. Empirically, we demonstrate that these approaches yield more robust models as demonstrated on a selection of realistic problems. In the third and final part of this thesis, we explore ways of efficiently adapting existing models to new domains or tasks. Our contribution to this topic takes inspiration from information geometry to derive a new gradient update rule which alleviate catastrophic forgetting issues during adaptation.

As soon as abstract mathematical computations were adapted to computation on digital computers, the problem of efficient representation, manipulation, and communication of the numerical values in those computations arose. Strongly related to the problem of numerical representation is the problem of quantization: in what manner should a set of continuous real-valued numbers be distributed over a fixed discrete set of numbers to minimize the number of bits required and also to maximize the accuracy of the attendant computations? This perennial problem of quantization is particularly relevant whenever memory and/or computational resources are severely restricted, and it has come to the forefront in recent years due to the remarkable performance of Neural Network models in computer vision, natural language processing, and related areas. Moving from floating-point representations to low-precision fixed integer values represented in four bits or less holds the potential to reduce the memory footprint and latency by a factor of 16x; and, in fact, reductions of 4x to 8x are often realized in practice in these applications. Thus, it is not surprising that quantization has emerged recently as an important and very active sub-area of research in the efficient implementation of computations associated with Neural Networks. In this article, we survey approaches to the problem of quantizing the numerical values in deep Neural Network computations, covering the advantages/disadvantages of current methods. With this survey and its organization, we hope to have presented a useful snapshot of the current research in quantization for Neural Networks and to have given an intelligent organization to ease the evaluation of future research in this area.

北京阿比特科技有限公司