The vast majority of evaluation metrics for machine translation are supervised, i.e., (i) assume the existence of reference translations, (ii) are trained on human scores, or (iii) leverage parallel data. This hinders their applicability to cases where such supervision signals are not available. In this work, we develop fully unsupervised evaluation metrics. To do so, we leverage similarities and synergies between evaluation metric induction, parallel corpus mining, and MT systems. In particular, we use an unsupervised evaluation metric to mine pseudo-parallel data, which we use to remap deficient underlying vector spaces (in an iterative manner) and to induce an unsupervised MT system, which then provides pseudo-references as an additional component in the metric. Finally, we also induce unsupervised multilingual sentence embeddings from pseudo-parallel data. We show that our fully unsupervised metrics are effective, i.e., they beat supervised competitors on 4 out of our 5 evaluation datasets.
Is it possible to build a general and automatic natural language generation (NLG) evaluation metric? Existing learned metrics either perform unsatisfactorily or are restricted to tasks where large human rating data is already available. We introduce SESCORE, a model-based metric that is highly correlated with human judgements without requiring human annotation, by utilizing a novel, iterative error synthesis and severity scoring pipeline. This pipeline applies a series of plausible errors to raw text and assigns severity labels by simulating human judgements with entailment. We evaluate SESCORE against existing metrics by comparing how their scores correlate with human ratings. SESCORE outperforms all prior unsupervised metrics on multiple diverse NLG tasks including machine translation, image captioning, and WebNLG text generation. For WMT 20/21 En-De and Zh-En, SESCORE improve the average Kendall correlation with human judgement from 0.154 to 0.195. SESCORE even achieves comparable performance to the best supervised metric COMET, despite receiving no human-annotated training data.
An important component in deploying machine learning (ML) in safety-critic applications is having a reliable measure of confidence in the ML model's predictions. For a classifier $f$ producing a probability vector $f(x)$ over the candidate classes, the confidence is typically taken to be $\max_i f(x)_i$. This approach is potentially limited, as it disregards the rest of the probability vector. In this work, we derive several confidence measures that depend on information beyond the maximum score, such as margin-based and entropy-based measures, and empirically evaluate their usefulness, focusing on NLP tasks with distribution shifts and Transformer-based models. We show that when models are evaluated on the out-of-distribution data ``out of the box'', using only the maximum score to inform the confidence measure is highly suboptimal. In the post-processing regime (where the scores of $f$ can be improved using additional in-distribution held-out data), this remains true, albeit less significant. Overall, our results suggest that entropy-based confidence is a surprisingly useful measure.
While machine translation evaluation metrics based on string overlap (e.g., BLEU) have their limitations, their computations are transparent: the BLEU score assigned to a particular candidate translation can be traced back to the presence or absence of certain words. The operations of newer learned metrics (e.g., BLEURT, COMET), which leverage pretrained language models to achieve higher correlations with human quality judgments than BLEU, are opaque in comparison. In this paper, we shed light on the behavior of these learned metrics by creating DEMETR, a diagnostic dataset with 31K English examples (translated from 10 source languages) for evaluating the sensitivity of MT evaluation metrics to 35 different linguistic perturbations spanning semantic, syntactic, and morphological error categories. All perturbations were carefully designed to form minimal pairs with the actual translation (i.e., differ in only one aspect). We find that learned metrics perform substantially better than string-based metrics on DEMETR. Additionally, learned metrics differ in their sensitivity to various phenomena (e.g., BERTScore is sensitive to untranslated words but relatively insensitive to gender manipulation, while COMET is much more sensitive to word repetition than to aspectual changes). We publicly release DEMETR to spur more informed future development of machine translation evaluation metrics
Human head pose estimation is an essential problem in facial analysis in recent years that has a lot of computer vision applications such as gaze estimation, virtual reality, and driver assistance. Because of the importance of the head pose estimation problem, it is necessary to design a compact model to resolve this task in order to reduce the computational cost when deploying on facial analysis-based applications such as large camera surveillance systems, AI cameras while maintaining accuracy. In this work, we propose a lightweight model that effectively addresses the head pose estimation problem. Our approach has two main steps. 1) We first train many teacher models on the synthesis dataset - 300W-LPA to get the head pose pseudo labels. 2) We design an architecture with the ResNet18 backbone and train our proposed model with the ensemble of these pseudo labels via the knowledge distillation process. To evaluate the effectiveness of our model, we use AFLW-2000 and BIWI - two real-world head pose datasets. Experimental results show that our proposed model significantly improves the accuracy in comparison with the state-of-the-art head pose estimation methods. Furthermore, our model has the real-time speed of $\sim$300 FPS when inferring on Tesla V100.
Compared with multi-class classification, multi-label classification that contains more than one class is more suitable in real life scenarios. Obtaining fully labeled high-quality datasets for multi-label classification problems, however, is extremely expensive, and sometimes even infeasible, with respect to annotation efforts, especially when the label spaces are too large. This motivates the research on partial-label classification, where only a limited number of labels are annotated and the others are missing. To address this problem, we first propose a pseudo-label based approach to reduce the cost of annotation without bringing additional complexity to the existing classification networks. Then we quantitatively study the impact of missing labels on the performance of classifier. Furthermore, by designing a novel loss function, we are able to relax the requirement that each instance must contain at least one positive label, which is commonly used in most existing approaches. Through comprehensive experiments on three large-scale multi-label image datasets, i.e. MS-COCO, NUS-WIDE, and Pascal VOC12, we show that our method can handle the imbalance between positive labels and negative labels, while still outperforming existing missing-label learning approaches in most cases, and in some cases even approaches with fully labeled datasets.
Rapid development in deep learning model construction has prompted an increased need for appropriate training data. The popularity of large datasets - sometimes known as "big data" - has diverted attention from assessing their quality. Training on large datasets often requires excessive system resources and an infeasible amount of time. Furthermore, the supervised machine learning process has yet to be fully automated: for supervised learning, large datasets require more time for manually labeling samples. We propose a method of curating smaller datasets with comparable out-of-distribution model accuracy after an initial training session using an appropriate distribution of samples classified by how difficult it is for a model to learn from them.
A major challenge in the field of Text Generation is evaluation because we lack a sound theory that can be leveraged to extract guidelines for evaluation campaigns. In this work, we propose a first step towards such a theory that incorporates different sources of uncertainty, such as imperfect automated metrics and insufficiently sized test sets. The theory has practical applications, such as determining the number of samples needed to reliably distinguish the performance of a set of Text Generation systems in a given setting. We showcase the application of the theory on the WMT 21 and Spot-The-Bot evaluation data and outline how it can be leveraged to improve the evaluation protocol regarding the reliability, robustness, and significance of the evaluation outcome.
Research on Machine Translation (MT) has achieved important breakthroughs in several areas. While there is much more to be done in order to build on this success, we believe that the language industry needs better ways to take full advantage of current achievements. Due to a combination of factors, including time, resources, and skills, businesses tend to apply pragmatism into their AI workflows. Hence, they concentrate more on outcomes, e.g. delivery, shipping, releases, and features, and adopt high-level working production solutions, where possible. Among the features thought to be helpful for translators are sentence-level and word-level translation auto-suggestion and auto-completion. Suggesting alternatives can inspire translators and limit their need to refer to external resources, which hopefully boosts their productivity. This work describes our submissions to WMT's shared task on word-level auto-completion, for the Chinese-to-English, English-to-Chinese, German-to-English, and English-to-German language directions. We investigate the possibility of using pre-trained models and out-of-the-box features from available libraries. We employ random sampling to generate diverse alternatives, which reveals good results. Furthermore, we introduce our open-source API, based on CTranslate2, to serve translations, auto-suggestions, and auto-completions.
Link prediction on knowledge graphs (KGs) is a key research topic. Previous work mainly focused on binary relations, paying less attention to higher-arity relations although they are ubiquitous in real-world KGs. This paper considers link prediction upon n-ary relational facts and proposes a graph-based approach to this task. The key to our approach is to represent the n-ary structure of a fact as a small heterogeneous graph, and model this graph with edge-biased fully-connected attention. The fully-connected attention captures universal inter-vertex interactions, while with edge-aware attentive biases to particularly encode the graph structure and its heterogeneity. In this fashion, our approach fully models global and local dependencies in each n-ary fact, and hence can more effectively capture associations therein. Extensive evaluation verifies the effectiveness and superiority of our approach. It performs substantially and consistently better than current state-of-the-art across a variety of n-ary relational benchmarks. Our code is publicly available.
Sentiment analysis is a widely studied NLP task where the goal is to determine opinions, emotions, and evaluations of users towards a product, an entity or a service that they are reviewing. One of the biggest challenges for sentiment analysis is that it is highly language dependent. Word embeddings, sentiment lexicons, and even annotated data are language specific. Further, optimizing models for each language is very time consuming and labor intensive especially for recurrent neural network models. From a resource perspective, it is very challenging to collect data for different languages. In this paper, we look for an answer to the following research question: can a sentiment analysis model trained on a language be reused for sentiment analysis in other languages, Russian, Spanish, Turkish, and Dutch, where the data is more limited? Our goal is to build a single model in the language with the largest dataset available for the task, and reuse it for languages that have limited resources. For this purpose, we train a sentiment analysis model using recurrent neural networks with reviews in English. We then translate reviews in other languages and reuse this model to evaluate the sentiments. Experimental results show that our robust approach of single model trained on English reviews statistically significantly outperforms the baselines in several different languages.