亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Forecasting multivariate time series data, which involves predicting future values of variables over time using historical data, has significant practical applications. Although deep learning-based models have shown promise in this field, they often fail to capture the causal relationship between dependent variables, leading to less accurate forecasts. Additionally, these models cannot handle the cold-start problem in time series data, where certain variables lack historical data, posing challenges in identifying dependencies among variables. To address these limitations, we introduce the Cold Causal Demand Forecasting (CDF-cold) framework that integrates causal inference with deep learning-based models to enhance the forecasting accuracy of multivariate time series data affected by the cold-start problem. To validate the effectiveness of the proposed approach, we collect 15 multivariate time-series datasets containing the network traffic of different Google data centers. Our experiments demonstrate that the CDF-cold framework outperforms state-of-the-art forecasting models in predicting future values of multivariate time series data.

相關內容

ACM/IEEE第23屆模型驅動工程語言和系統國際會議,是模型驅動軟件和系統工程的首要會議系列,由ACM-SIGSOFT和IEEE-TCSE支持組織。自1998年以來,模型涵蓋了建模的各個方面,從語言和方法到工具和應用程序。模特的參加者來自不同的背景,包括研究人員、學者、工程師和工業專業人士。MODELS 2019是一個論壇,參與者可以圍繞建模和模型驅動的軟件和系統交流前沿研究成果和創新實踐經驗。今年的版本將為建模社區提供進一步推進建模基礎的機會,并在網絡物理系統、嵌入式系統、社會技術系統、云計算、大數據、機器學習、安全、開源等新興領域提出建模的創新應用以及可持續性。 官網鏈接: · MoDELS · 可理解性 · 可辨認的 · 生成模型 ·
2023 年 8 月 7 日

Understanding how well a deep generative model captures a distribution of high-dimensional data remains an important open challenge. It is especially difficult for certain model classes, such as Generative Adversarial Networks and Diffusion Models, whose models do not admit exact likelihoods. In this work, we demonstrate that generalized empirical likelihood (GEL) methods offer a family of diagnostic tools that can identify many deficiencies of deep generative models (DGMs). We show, with appropriate specification of moment conditions, that the proposed method can identify which modes have been dropped, the degree to which DGMs are mode imbalanced, and whether DGMs sufficiently capture intra-class diversity. We show how to combine techniques from Maximum Mean Discrepancy and Generalized Empirical Likelihood to create not only distribution tests that retain per-sample interpretability, but also metrics that include label information. We find that such tests predict the degree of mode dropping and mode imbalance up to 60% better than metrics such as improved precision/recall. We provide an implementation at //github.com/deepmind/understanding_deep_generative_models_with_generalized_empirical_likelihood/.

Multivariate time series long-term prediction, which aims to predict the change of data in a long time, can provide references for decision-making. Although transformer-based models have made progress in this field, they usually do not make full use of three features of multivariate time series: global information, local information, and variables correlation. To effectively mine the above three features and establish a high-precision prediction model, we propose a double sampling transformer (DSformer), which consists of the double sampling (DS) block and the temporal variable attention (TVA) block. Firstly, the DS block employs down sampling and piecewise sampling to transform the original series into feature vectors that focus on global information and local information respectively. Then, TVA block uses temporal attention and variable attention to mine these feature vectors from different dimensions and extract key information. Finally, based on a parallel structure, DSformer uses multiple TVA blocks to mine and integrate different features obtained from DS blocks respectively. The integrated feature information is passed to the generative decoder based on a multi-layer perceptron to realize multivariate time series long-term prediction. Experimental results on nine real-world datasets show that DSformer can outperform eight existing baselines.

Painterly image harmonization aims to insert photographic objects into paintings and obtain artistically coherent composite images. Previous methods for this task mainly rely on inference optimization or generative adversarial network, but they are either very time-consuming or struggling at fine control of the foreground objects (e.g., texture and content details). To address these issues, we propose a novel Painterly Harmonization stable Diffusion model (PHDiffusion), which includes a lightweight adaptive encoder and a Dual Encoder Fusion (DEF) module. Specifically, the adaptive encoder and the DEF module first stylize foreground features within each encoder. Then, the stylized foreground features from both encoders are combined to guide the harmonization process. During training, besides the noise loss in diffusion model, we additionally employ content loss and two style losses, i.e., AdaIN style loss and contrastive style loss, aiming to balance the trade-off between style migration and content preservation. Compared with the state-of-the-art models from related fields, our PHDiffusion can stylize the foreground more sufficiently and simultaneously retain finer content. Our code and model are available at //github.com/bcmi/PHDiffusion-Painterly-Image-Harmonization.

Conventional detectors suffer from performance degradation when dealing with long-tailed data due to a classification bias towards the majority head categories. In this paper, we contend that the learning bias originates from two factors: 1) the unequal competition arising from the imbalanced distribution of foreground categories, and 2) the lack of sample diversity in tail categories. To tackle these issues, we introduce a unified framework called BAlanced CLassification (BACL), which enables adaptive rectification of inequalities caused by disparities in category distribution and dynamic intensification of sample diversities in a synchronized manner. Specifically, a novel foreground classification balance loss (FCBL) is developed to ameliorate the domination of head categories and shift attention to difficult-to-differentiate categories by introducing pairwise class-aware margins and auto-adjusted weight terms, respectively. This loss prevents the over-suppression of tail categories in the context of unequal competition. Moreover, we propose a dynamic feature hallucination module (FHM), which enhances the representation of tail categories in the feature space by synthesizing hallucinated samples to introduce additional data variances. In this divide-and-conquer approach, BACL sets a new state-of-the-art on the challenging LVIS benchmark with a decoupled training pipeline, surpassing vanilla Faster R-CNN with ResNet-50-FPN by 5.8% AP and 16.1% AP for overall and tail categories. Extensive experiments demonstrate that BACL consistently achieves performance improvements across various datasets with different backbones and architectures. Code and models are available at //github.com/Tianhao-Qi/BACL.

As the development of measuring instruments and computers has accelerated the collection of massive data, functional data analysis (FDA) has gained a surge of attention. FDA is a methodology that treats longitudinal data as a function and performs inference, including regression. Functionalizing data typically involves fitting it with basis functions. However, the number of these functions smaller than the sample size is selected commonly. This paper casts doubt on this convention. Recent statistical theory has witnessed a phenomenon (the so-called double descent) in which excess parameters overcome overfitting and lead to precise interpolation. If we transfer this idea to the choice of the number of bases for functional data, providing an excess number of bases can lead to accurate predictions. We have explored this phenomenon in a functional regression problem and examined its validity through numerical experiments. In addition, through application to real-world datasets, we demonstrated that the double descent goes beyond just theoretical and numerical experiments - it is also important for practical use.

Causal probabilistic graph-based models have gained widespread utility, enabling the modeling of cause-and-effect relationships across diverse domains. With their rising adoption in new areas, such as automotive system safety and machine learning, the need for an integrated lifecycle framework akin to DevOps and MLOps has emerged. Currently, a process reference for organizations interested in employing causal engineering is missing. To address this gap and foster widespread industrial adoption, we propose CausalOps, a novel lifecycle framework for causal model development and application. By defining key entities, dependencies, and intermediate artifacts generated during causal engineering, we establish a consistent vocabulary and workflow model. This work contextualizes causal model usage across different stages and stakeholders, outlining a holistic view of creating and maintaining them. CausalOps' aim is to drive the adoption of causal methods in practical applications within interested organizations and the causality community.

Recently, researchers have gradually realized that in some cases, the self-supervised pre-training on large-scale Internet data is better than that of high-quality/manually labeled data sets, and multimodal/large models are better than single or bimodal/small models. In this paper, we propose a robust audio representation learning method WavBriVL based on Bridging-Vision-and-Language (BriVL). WavBriVL projects audio, image and text into a shared embedded space, so that multi-modal applications can be realized. We demonstrate the qualitative evaluation of the image generated from WavBriVL as a shared embedded space, with the main purposes of this paper:(1) Learning the correlation between audio and image;(2) Explore a new way of image generation, that is, use audio to generate pictures. Experimental results show that this method can effectively generate appropriate images from audio.

The existence of representative datasets is a prerequisite of many successful artificial intelligence and machine learning models. However, the subsequent application of these models often involves scenarios that are inadequately represented in the data used for training. The reasons for this are manifold and range from time and cost constraints to ethical considerations. As a consequence, the reliable use of these models, especially in safety-critical applications, is a huge challenge. Leveraging additional, already existing sources of knowledge is key to overcome the limitations of purely data-driven approaches, and eventually to increase the generalization capability of these models. Furthermore, predictions that conform with knowledge are crucial for making trustworthy and safe decisions even in underrepresented scenarios. This work provides an overview of existing techniques and methods in the literature that combine data-based models with existing knowledge. The identified approaches are structured according to the categories integration, extraction and conformity. Special attention is given to applications in the field of autonomous driving.

The accurate and interpretable prediction of future events in time-series data often requires the capturing of representative patterns (or referred to as states) underpinning the observed data. To this end, most existing studies focus on the representation and recognition of states, but ignore the changing transitional relations among them. In this paper, we present evolutionary state graph, a dynamic graph structure designed to systematically represent the evolving relations (edges) among states (nodes) along time. We conduct analysis on the dynamic graphs constructed from the time-series data and show that changes on the graph structures (e.g., edges connecting certain state nodes) can inform the occurrences of events (i.e., time-series fluctuation). Inspired by this, we propose a novel graph neural network model, Evolutionary State Graph Network (EvoNet), to encode the evolutionary state graph for accurate and interpretable time-series event prediction. Specifically, Evolutionary State Graph Network models both the node-level (state-to-state) and graph-level (segment-to-segment) propagation, and captures the node-graph (state-to-segment) interactions over time. Experimental results based on five real-world datasets show that our approach not only achieves clear improvements compared with 11 baselines, but also provides more insights towards explaining the results of event predictions.

With the rapid increase of large-scale, real-world datasets, it becomes critical to address the problem of long-tailed data distribution (i.e., a few classes account for most of the data, while most classes are under-represented). Existing solutions typically adopt class re-balancing strategies such as re-sampling and re-weighting based on the number of observations for each class. In this work, we argue that as the number of samples increases, the additional benefit of a newly added data point will diminish. We introduce a novel theoretical framework to measure data overlap by associating with each sample a small neighboring region rather than a single point. The effective number of samples is defined as the volume of samples and can be calculated by a simple formula $(1-\beta^{n})/(1-\beta)$, where $n$ is the number of samples and $\beta \in [0,1)$ is a hyperparameter. We design a re-weighting scheme that uses the effective number of samples for each class to re-balance the loss, thereby yielding a class-balanced loss. Comprehensive experiments are conducted on artificially induced long-tailed CIFAR datasets and large-scale datasets including ImageNet and iNaturalist. Our results show that when trained with the proposed class-balanced loss, the network is able to achieve significant performance gains on long-tailed datasets.

北京阿比特科技有限公司