亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Instrumental variable methods provide useful tools for inferring causal effects in the presence of unmeasured confounding. To apply these methods with large-scale data sets, a major challenge is to find valid instruments from a possibly large candidate set. In practice, most of the candidate instruments are often not relevant for studying a particular exposure of interest. Moreover, not all relevant candidate instruments are valid as they may directly influence the outcome of interest. In this article, we propose a data-driven method for causal inference with many candidate instruments that addresses these two challenges simultaneously. A key component of our proposal is a novel resampling method, which constructs pseudo variables to remove irrelevant candidate instruments having spurious correlations with the exposure. Synthetic data analyses show that the proposed method performs favourably compared to existing methods. We apply our method to a Mendelian randomization study estimating the effect of obesity on health-related quality of life.

相關內容

We consider the problem of constructing bounds on the average treatment effect (ATE) when unmeasured confounders exist but have bounded influence. Specifically, we assume that omitted confounders could not change the odds of treatment for any unit by more than a fixed factor. We derive the sharp partial identification bounds implied by this assumption by leveraging distributionally robust optimization, and we propose estimators of these bounds with several novel robustness properties. The first is double sharpness: our estimators consistently estimate the sharp ATE bounds when one of two nuisance parameters is misspecified and achieve semiparametric efficiency when all nuisance parameters are suitably consistent. The second is double validity: even when most nuisance parameters are misspecified, our estimators still provide valid but possibly conservative bounds for the ATE and our Wald confidence intervals remain valid even when our estimators are not asymptotically normal. As a result, our estimators provide a highly credible method for sensitivity analysis of causal inferences.

Model selection in machine learning (ML) is a crucial part of the Bayesian learning procedure. Model choice may impose strong biases on the resulting predictions, which can hinder the performance of methods such as Bayesian neural networks and neural samplers. On the other hand, newly proposed approaches for Bayesian ML exploit features of approximate inference in function space with implicit stochastic processes (a generalization of Gaussian processes). The approach of Sparse Implicit Processes (SIP) is particularly successful in this regard, since it is fully trainable and achieves flexible predictions. Here, we expand on the original experiments to show that SIP is capable of correcting model bias when the data generating mechanism differs strongly from the one implied by the model. We use synthetic datasets to show that SIP is capable of providing predictive distributions that reflect the data better than the exact predictions of the initial, but wrongly assumed model.

Humans possess an innate ability to identify and differentiate instances that they are not familiar with, by leveraging and adapting the knowledge that they have acquired so far. Importantly, they achieve this without deteriorating the performance on their earlier learning. Inspired by this, we identify and formulate a new, pragmatic problem setting of NCDwF: Novel Class Discovery without Forgetting, which tasks a machine learning model to incrementally discover novel categories of instances from unlabeled data, while maintaining its performance on the previously seen categories. We propose 1) a method to generate pseudo-latent representations which act as a proxy for (no longer available) labeled data, thereby alleviating forgetting, 2) a mutual-information based regularizer which enhances unsupervised discovery of novel classes, and 3) a simple Known Class Identifier which aids generalized inference when the testing data contains instances form both seen and unseen categories. We introduce experimental protocols based on CIFAR-10, CIFAR-100 and ImageNet-1000 to measure the trade-off between knowledge retention and novel class discovery. Our extensive evaluations reveal that existing models catastrophically forget previously seen categories while identifying novel categories, while our method is able to effectively balance between the competing objectives. We hope our work will attract further research into this newly identified pragmatic problem setting.

There are inevitably many mislabeled data in real-world datasets. Because deep neural networks (DNNs) have an enormous capacity to memorize noisy labels, a robust training scheme is required to prevent labeling errors from degrading the generalization performance of DNNs. Current state-of-the-art methods present a co-training scheme that trains dual networks using samples associated with small losses. In practice, however, training two networks simultaneously can burden computing resources. In this study, we propose a simple yet effective robust training scheme that operates by training only a single network. During training, the proposed method generates temporal self-ensemble by sampling intermediate network parameters from the weight trajectory formed by stochastic gradient descent optimization. The loss sum evaluated with these self-ensembles is used to identify incorrectly labeled samples. In parallel, our method generates multi-view predictions by transforming an input data into various forms and considers their agreement to identify incorrectly labeled samples. By combining the aforementioned metrics, we present the proposed {\it self-ensemble-based robust training} (SRT) method, which can filter the samples with noisy labels to reduce their influence on training. Experiments on widely-used public datasets demonstrate that the proposed method achieves a state-of-the-art performance in some categories without training the dual networks.

Prior works on self-supervised pre-training focus on the joint training scenario, where massive unlabeled data are assumed to be given as input all at once, and only then is a learner trained. Unfortunately, such a problem setting is often impractical if not infeasible since many real-world tasks rely on sequential learning, e.g., data are decentralized or collected in a streaming fashion. In this paper, we conduct the first thorough and dedicated investigation on self-supervised pre-training with streaming data, aiming to shed light on the model behavior under this overlooked setup. Specifically, we pre-train over 500 models on four categories of pre-training streaming data from ImageNet and DomainNet and evaluate them on three types of downstream tasks and 12 different downstream datasets. Our studies show that, somehow beyond our expectation, with simple data replay or parameter regularization, sequential self-supervised pre-training turns out to be an efficient alternative for joint pre-training, as the performances of the former are mostly on par with those of the latter. Moreover, catastrophic forgetting, a common issue in sequential supervised learning, is much alleviated in sequential self-supervised learning (SSL), which is well justified through our comprehensive empirical analysis on representations and the sharpness of minima in the loss landscape. Our findings, therefore, suggest that, in practice, for SSL, the cumbersome joint training can be replaced mainly by sequential learning, which in turn enables a much broader spectrum of potential application scenarios.

The fundamental challenge of drawing causal inference is that counterfactual outcomes are not fully observed for any unit. Furthermore, in observational studies, treatment assignment is likely to be confounded. Many statistical methods have emerged for causal inference under unconfoundedness conditions given pre-treatment covariates, including propensity score-based methods, prognostic score-based methods, and doubly robust methods. Unfortunately for applied researchers, there is no `one-size-fits-all' causal method that can perform optimally universally. In practice, causal methods are primarily evaluated quantitatively on handcrafted simulated data. Such data-generative procedures can be of limited value because they are typically stylized models of reality. They are simplified for tractability and lack the complexities of real-world data. For applied researchers, it is critical to understand how well a method performs for the data at hand. Our work introduces a deep generative model-based framework, Credence, to validate causal inference methods. The framework's novelty stems from its ability to generate synthetic data anchored at the empirical distribution for the observed sample, and therefore virtually indistinguishable from the latter. The approach allows the user to specify ground truth for the form and magnitude of causal effects and confounding bias as functions of covariates. Thus simulated data sets are used to evaluate the potential performance of various causal estimation methods when applied to data similar to the observed sample. We demonstrate Credence's ability to accurately assess the relative performance of causal estimation techniques in an extensive simulation study and two real-world data applications from Lalonde and Project STAR studies.

Causality can be described in terms of a structural causal model (SCM) that carries information on the variables of interest and their mechanistic relations. For most processes of interest the underlying SCM will only be partially observable, thus causal inference tries to leverage any exposed information. Graph neural networks (GNN) as universal approximators on structured input pose a viable candidate for causal learning, suggesting a tighter integration with SCM. To this effect we present a theoretical analysis from first principles that establishes a novel connection between GNN and SCM while providing an extended view on general neural-causal models. We then establish a new model class for GNN-based causal inference that is necessary and sufficient for causal effect identification. Our empirical illustration on simulations and standard benchmarks validate our theoretical proofs.

This paper focuses on the expected difference in borrower's repayment when there is a change in the lender's credit decisions. Classical estimators overlook the confounding effects and hence the estimation error can be magnificent. As such, we propose another approach to construct the estimators such that the error can be greatly reduced. The proposed estimators are shown to be unbiased, consistent, and robust through a combination of theoretical analysis and numerical testing. Moreover, we compare the power of estimating the causal quantities between the classical estimators and the proposed estimators. The comparison is tested across a wide range of models, including linear regression models, tree-based models, and neural network-based models, under different simulated datasets that exhibit different levels of causality, different degrees of nonlinearity, and different distributional properties. Most importantly, we apply our approaches to a large observational dataset provided by a global technology firm that operates in both the e-commerce and the lending business. We find that the relative reduction of estimation error is strikingly substantial if the causal effects are accounted for correctly.

Graph Neural Networks (GNNs), which generalize deep neural networks to graph-structured data, have drawn considerable attention and achieved state-of-the-art performance in numerous graph related tasks. However, existing GNN models mainly focus on designing graph convolution operations. The graph pooling (or downsampling) operations, that play an important role in learning hierarchical representations, are usually overlooked. In this paper, we propose a novel graph pooling operator, called Hierarchical Graph Pooling with Structure Learning (HGP-SL), which can be integrated into various graph neural network architectures. HGP-SL incorporates graph pooling and structure learning into a unified module to generate hierarchical representations of graphs. More specifically, the graph pooling operation adaptively selects a subset of nodes to form an induced subgraph for the subsequent layers. To preserve the integrity of graph's topological information, we further introduce a structure learning mechanism to learn a refined graph structure for the pooled graph at each layer. By combining HGP-SL operator with graph neural networks, we perform graph level representation learning with focus on graph classification task. Experimental results on six widely used benchmarks demonstrate the effectiveness of our proposed model.

北京阿比特科技有限公司