Two CNF formulas are called ucp-equivalent, if they behave in the same way with respect to the unit clause propagation (UCP). A formula is called ucp-irredundant, if removing any clause leads to a formula which is not ucp-equivalent to the original one. As a consequence of known results, the ratio of the size of a ucp-irredundant formula and the size of a smallest ucp-equivalent formula is at most $n^2$, where $n$ is the number of the variables. We demonstrate an example of a ucp-irredundant formula for a symmetric definite Horn function which is larger than a smallest ucp-equivalent formula by a factor $\Omega(n/\ln n)$ and, hence, a general upper bound on the above ratio cannot be smaller than this.
We show that the known list-decoding algorithms for univariate multiplicity and folded Reed-Solomon codes can be made to run in $\tilde{O}(n)$ time. Univariate multiplicity codes and FRS codes are natural variants of Reed-Solomon codes that were discovered and studied for their applications to list decoding. It is known that for every $\epsilon>0$, and rate $r \in (0,1)$, there exist explicit families of these codes that have rate $r$ and can be list decoded from a $(1-r-\epsilon)$ fraction of errors with constant list size in polynomial time (Guruswami & Wang (IEEE Trans. Inform. Theory 2013) and Kopparty, Ron-Zewi, Saraf & Wootters (SIAM J. Comput. 2023)). In this work, we present randomized algorithms that perform the above list-decoding tasks in $\tilde{O}(n)$, where $n$ is the block-length of the code. Our algorithms have two main components. The first component builds upon the lattice-based approach of Alekhnovich (IEEE Trans. Inf. Theory 2005), who designed a $\tilde{O}(n)$ time list-decoding algorithm for Reed-Solomon codes approaching the Johnson radius. As part of the second component, we design $\tilde{O}(n)$ time algorithms for two natural algebraic problems: given a $(m+2)$-variate polynomial $Q(x,y_0,\dots,y_m) = \tilde{Q}(x) + \sum_{i=0}^m Q_i(x)\cdot y_i$ the first algorithm solves order-$m$ linear differential equations of the form $Q\left(x, f(x), \frac{df}{dx}, \dots,\frac{d^m f}{dx^m}\right) \equiv 0$ while the second solves functional equations of the form $Q\left(x, f(x), f(\gamma x), \dots,f(\gamma^m x)\right) \equiv 0$, where $m$ is an arbitrary constant and $\gamma$ is a field element of sufficiently high order. These algorithms can be viewed as generalizations of classical $\tilde{O}(n)$ time algorithms of Sieveking (Computing 1972) and Kung (Numer. Math. 1974) for computing the modular inverse of a power series, and might be of independent interest.
We consider linear bounded operators acting in Banach spaces with a basis, such operators can be represented by an infinite matrix. We prove that for an invertible operator there exists a sequence of invertible finite-dimensional operators so that the family of norms of their inverses is uniformly bounded. It leads to the fact that solutions of finite-dimensional equations converge to the solution of initial operator equation with infinite-dimensional matrix.
Kr\"oncke has shown that the Fubini-Study metric is an unstable generalized stationary solution of Ricci flow [Kr\"o20]. In this paper, we carry out numerical simulations which indicate that Ricci flow solutions originating at unstable perturbations of the Fubini-Study metric develop local singularities modeled by the blowdown soliton discovered in [FIK03].
In 1934, the American statistician Samuel S. Wilks derived remarkable formulas for the joint moments of embedded principal minors of sample covariance matrices in multivariate normal populations, and he used them to compute the moments of sample statistics in various applications related to multivariate linear regression. These important but little-known moment results were extended in 1963 by the Australian statistician A. Graham Constantine using Bartlett's decomposition. In this note, a new proof of Wilks' results is derived using the concept of iterated Schur complements, thereby bypassing Bartlett's decomposition. Furthermore, Wilks' open problem of evaluating joint moments of disjoint principal minors of Wishart random matrices is related to the Gaussian product inequality conjecture.
For the ground state of the Gross-Pitaevskii (GP) eigenvalue problem, we consider a fully discretized Sobolev gradient flow, which can be regarded as the Riemannian gradient descent on the sphere under a metric induced by a modified $H^1$-norm. We prove its global convergence to a critical point of the discrete GP energy and its local exponential convergence to the ground state of the discrete GP energy. The local exponential convergence rate depends on the eigengap of the discrete GP energy. When the discretization is the classical second-order finite difference in two dimensions, such an eigengap can be further proven to be mesh independent, i.e., it has a uniform positive lower bound, thus the local exponential convergence rate is mesh independent. Numerical experiments with discretization by high order $Q^k$ spectral element methods in two and three dimensions are provided to validate the efficiency of the proposed method.
The sparsity-ranked lasso (SRL) has been developed for model selection and estimation in the presence of interactions and polynomials. The main tenet of the SRL is that an algorithm should be more skeptical of higher-order polynomials and interactions *a priori* compared to main effects, and hence the inclusion of these more complex terms should require a higher level of evidence. In time series, the same idea of ranked prior skepticism can be applied to the possibly seasonal autoregressive (AR) structure of the series during the model fitting process, becoming especially useful in settings with uncertain or multiple modes of seasonality. The SRL can naturally incorporate exogenous variables, with streamlined options for inference and/or feature selection. The fitting process is quick even for large series with a high-dimensional feature set. In this work, we discuss both the formulation of this procedure and the software we have developed for its implementation via the **fastTS** R package. We explore the performance of our SRL-based approach in a novel application involving the autoregressive modeling of hourly emergency room arrivals at the University of Iowa Hospitals and Clinics. We find that the SRL is considerably faster than its competitors, while producing more accurate predictions.
To date, most methods for simulating conditioned diffusions are limited to the Euclidean setting. The conditioned process can be constructed using a change of measure known as Doob's $h$-transform. The specific type of conditioning depends on a function $h$ which is typically unknown in closed form. To resolve this, we extend the notion of guided processes to a manifold $M$, where one replaces $h$ by a function based on the heat kernel on $M$. We consider the case of a Brownian motion with drift, constructed using the frame bundle of $M$, conditioned to hit a point $x_T$ at time $T$. We prove equivalence of the laws of the conditioned process and the guided process with a tractable Radon-Nikodym derivative. Subsequently, we show how one can obtain guided processes on any manifold $N$ that is diffeomorphic to $M$ without assuming knowledge of the heat kernel on $N$. We illustrate our results with numerical simulations and an example of parameter estimation where a diffusion process on the torus is observed discretely in time.
An invertible function is bi-Lipschitz if both the function and its inverse have bounded Lipschitz constants. Nowadays, most Normalizing Flows are bi-Lipschitz by design or by training to limit numerical errors (among other things). In this paper, we discuss the expressivity of bi-Lipschitz Normalizing Flows and identify several target distributions that are difficult to approximate using such models. Then, we characterize the expressivity of bi-Lipschitz Normalizing Flows by giving several lower bounds on the Total Variation distance between these particularly unfavorable distributions and their best possible approximation. Finally, we discuss potential remedies which include using more complex latent distributions.
The Scott-Vogelius element is a popular finite element for the discretization of the Stokes equations which enjoys inf-sup stability and gives divergence-free velocity approximation. However, it is well known that the convergence rates for the discrete pressure deteriorate in the presence of certain $critical$ $vertices$ in a triangulation of the domain. Modifications of the Scott-Vogelius element such as the recently introduced pressure-wired Stokes element also suffer from this effect. In this paper we introduce a simple modification strategy for these pressure spaces that preserves the inf-sup stability while the pressure converges at an optimal rate.
Robust Markov Decision Processes (RMDPs) are a widely used framework for sequential decision-making under parameter uncertainty. RMDPs have been extensively studied when the objective is to maximize the discounted return, but little is known for average optimality (optimizing the long-run average of the rewards obtained over time) and Blackwell optimality (remaining discount optimal for all discount factors sufficiently close to 1). In this paper, we prove several foundational results for RMDPs beyond the discounted return. We show that average optimal policies can be chosen stationary and deterministic for sa-rectangular RMDPs but, perhaps surprisingly, that history-dependent (Markovian) policies strictly outperform stationary policies for average optimality in s-rectangular RMDPs. We also study Blackwell optimality for sa-rectangular RMDPs, where we show that {\em approximate} Blackwell optimal policies always exist, although Blackwell optimal policies may not exist. We also provide a sufficient condition for their existence, which encompasses virtually any examples from the literature. We then discuss the connection between average and Blackwell optimality, and we describe several algorithms to compute the optimal average return. Interestingly, our approach leverages the connections between RMDPs and stochastic games.