亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Asynchronous pipeline model parallelism with a "1F1B" (one forward, one backward) schedule generates little bubble overhead and always provides quite a high throughput. However, the "1F1B" schedule inevitably leads to weight inconsistency and weight staleness issues due to the cross-training of different mini-batches across GPUs. To simultaneously address these two problems, in this paper, we propose an optimizer-dependent weight prediction strategy (a.k.a PipeOptim) for asynchronous pipeline training. The key insight of our proposal is that we employ a weight prediction strategy in the forward pass to ensure that each mini-batch uses consistent and staleness-free weights to compute the forward pass. To be concrete, we first construct the weight prediction scheme based on the update rule of the used optimizer when training the deep neural network models. Then throughout the "1F1B" pipelined training, each mini-batch is mandated to execute weight prediction ahead of the forward pass, subsequently employing the predicted weights to perform the forward pass. As a result, PipeOptim 1) inherits the advantage of the "1F1B" schedule and generates pretty high throughput, and 2) can ensure effective parameter learning regardless of the type of the used optimizer. To verify the effectiveness of our proposal, we conducted extensive experimental evaluations using eight different deep-learning models spanning three machine-learning tasks including image classification, sentiment analysis, and machine translation. The experiment results demonstrate that PipeOptim outperforms the popular pipelined approaches including GPipe, PipeDream, PipeDream-2BW, and SpecTrain. The code of PipeOptim can be accessible at //github.com/guanleics/PipeOptim.

相關內容

We present a real-time method for robust estimation of multiple instances of geometric models from noisy data. Geometric models such as vanishing points, planar homographies or fundamental matrices are essential for 3D scene analysis. Previous approaches discover distinct model instances in an iterative manner, thus limiting their potential for speedup via parallel computation. In contrast, our method detects all model instances independently and in parallel. A neural network segments the input data into clusters representing potential model instances by predicting multiple sets of sample and inlier weights. Using the predicted weights, we determine the model parameters for each potential instance separately in a RANSAC-like fashion. We train the neural network via task-specific loss functions, i.e. we do not require a ground-truth segmentation of the input data. As suitable training data for homography and fundamental matrix fitting is scarce, we additionally present two new synthetic datasets. We demonstrate state-of-the-art performance on these as well as multiple established datasets, with inference times as small as five milliseconds per image.

Recently, Graph Neural Network (GNN)-based vulnerability detection systems have achieved remarkable success. However, the lack of explainability poses a critical challenge to deploy black-box models in security-related domains. For this reason, several approaches have been proposed to explain the decision logic of the detection model by providing a set of crucial statements positively contributing to its predictions. Unfortunately, due to the weakly-robust detection models and suboptimal explanation strategy, they have the danger of revealing spurious correlations and redundancy issue. In this paper, we propose Coca, a general framework aiming to 1) enhance the robustness of existing GNN-based vulnerability detection models to avoid spurious explanations; and 2) provide both concise and effective explanations to reason about the detected vulnerabilities. \sysname consists of two core parts referred to as Trainer and Explainer. The former aims to train a detection model which is robust to random perturbation based on combinatorial contrastive learning, while the latter builds an explainer to derive crucial code statements that are most decisive to the detected vulnerability via dual-view causal inference as explanations. We apply Coca over three typical GNN-based vulnerability detectors. Experimental results show that Coca can effectively mitigate the spurious correlation issue, and provide more useful high-quality explanations.

Recent advancements in diffusion models have significantly enhanced the data synthesis with 2D control. Yet, precise 3D control in street view generation, crucial for 3D perception tasks, remains elusive. Specifically, utilizing Bird's-Eye View (BEV) as the primary condition often leads to challenges in geometry control (e.g., height), affecting the representation of object shapes, occlusion patterns, and road surface elevations, all of which are essential to perception data synthesis, especially for 3D object detection tasks. In this paper, we introduce MagicDrive, a novel street view generation framework offering diverse 3D geometry controls, including camera poses, road maps, and 3D bounding boxes, together with textual descriptions, achieved through tailored encoding strategies. Besides, our design incorporates a cross-view attention module, ensuring consistency across multiple camera views. With MagicDrive, we achieve high-fidelity street-view synthesis that captures nuanced 3D geometry and various scene descriptions, enhancing tasks like BEV segmentation and 3D object detection.

In the field of multi-object tracking (MOT), recent Transformer based end-to-end models like MOTR have demonstrated exceptional performance on datasets such as DanceTracker. However, the computational demands of these models present challenges in training and deployment. Drawing inspiration from successful models like GPT, we present MO-YOLO, an efficient and computationally frugal end-to-end MOT model. MO-YOLO integrates principles from You Only Look Once (YOLO) and RT-DETR, adopting a decoder-only approach. By leveraging the decoder from RT-DETR and architectural components from YOLOv8, MO-YOLO achieves high speed, shorter training times, and proficient MOT performance. On the Dancetrack, MO-YOLO not only matches MOTR's performance but also surpasses it, achieving over twice the frames per second (MOTR 9.5 FPS, MO-YOLO 19.6 FPS). Furthermore, MO-YOLO demonstrates significantly reduced training times and lower hardware requirements compared to MOTR. This research introduces a promising paradigm for efficient end-to-end MOT, emphasizing enhanced performance and resource efficiency.

Loopable music generation systems enable diverse applications, but they often lack controllability and customization capabilities. We argue that enhancing controllability can enrich these models, with emotional expression being a crucial aspect for both creators and listeners. Hence, building upon LooperGP, a loopable tablature generation model, this paper explores endowing systems with control over conveyed emotions. To enable such conditional generation, we propose integrating musical knowledge by utilizing multi-granular semantic and musical features during model training and inference. Specifically, we incorporate song-level features (Emotion Labels, Tempo, and Mode) and bar-level features (Tonal Tension) together to guide emotional expression. Through algorithmic and human evaluations, we demonstrate the approach's effectiveness in producing music conveying two contrasting target emotions, happiness and sadness. An ablation study is also conducted to clarify the contributing factors behind our approach's results.

We propose Compact and Swift Segmenting 3D Gaussians(CoSSegGaussians), a method for compact 3D-consistent scene segmentation at fast rendering speed with only RGB images input. Previous NeRF-based segmentation methods have relied on time-consuming neural scene optimization. While recent 3D Gaussian Splatting has notably improved speed, existing Gaussian-based segmentation methods struggle to produce compact masks, especially in zero-shot segmentation. This issue probably stems from their straightforward assignment of learnable parameters to each Gaussian, resulting in a lack of robustness against cross-view inconsistent 2D machine-generated labels. Our method aims to address this problem by employing Dual Feature Fusion Network as Gaussians' segmentation field. Specifically, we first optimize 3D Gaussians under RGB supervision. After Gaussian Locating, DINO features extracted from images are applied through explicit unprojection, which are further incorporated with spatial features from the efficient point cloud processing network. Feature aggregation is utilized to fuse them in a global-to-local strategy for compact segmentation features. Experimental results show that our model outperforms baselines on both semantic and panoptic zero-shot segmentation task, meanwhile consumes less than 10\% inference time compared to NeRF-based methods. Code and more results will be available at //David-Dou.github.io/CoSSegGaussians.

Latest diffusion-based methods for many image restoration tasks outperform traditional models, but they encounter the long-time inference problem. To tackle it, this paper proposes a Wavelet-Based Diffusion Model (WaveDM). WaveDM learns the distribution of clean images in the wavelet domain conditioned on the wavelet spectrum of degraded images after wavelet transform, which is more time-saving in each step of sampling than modeling in the spatial domain. To ensure restoration performance, a unique training strategy is proposed where the low-frequency and high-frequency spectrums are learned using distinct modules. In addition, an Efficient Conditional Sampling (ECS) strategy is developed from experiments, which reduces the number of total sampling steps to around 5. Evaluations on twelve benchmark datasets including image raindrop removal, rain steaks removal, dehazing, defocus deblurring, demoir\'eing, and denoising demonstrate that WaveDM achieves state-of-the-art performance with the efficiency that is comparable to traditional one-pass methods and over 100$\times$ faster than existing image restoration methods using vanilla diffusion models.

We present HyperQB, a push-button QBF-based bounded model checker for hyperproperties. HyperQB takes as input a NuSMV model and a formula expressed in the temporal logic HyperLTL. Our QBF-based technique allows HyperQB to seamlessly deal with quantifier alternations. Based on the selection of either bug hunting or synthesis, the instances of counterexamples (for negated formula) or witnesses (for synthesis of positive formulas) are returned. We report on successful and effective verification for a rich set of experiments on a variety of case studies, including information-flow security, concurrent data structures, path planning for robots, co-termination, deniability, intransitivity of non-interference, and secrecy-preserving refinement. We also rigorously compare and contrast HyperQB with existing tools for model checking hyperporperties.

Multi-agent influence diagrams (MAIDs) are a popular form of graphical model that, for certain classes of games, have been shown to offer key complexity and explainability advantages over traditional extensive form game (EFG) representations. In this paper, we extend previous work on MAIDs by introducing the concept of a MAID subgame, as well as subgame perfect and trembling hand perfect equilibrium refinements. We then prove several equivalence results between MAIDs and EFGs. Finally, we describe an open source implementation for reasoning about MAIDs and computing their equilibria.

With the capability of modeling bidirectional contexts, denoising autoencoding based pretraining like BERT achieves better performance than pretraining approaches based on autoregressive language modeling. However, relying on corrupting the input with masks, BERT neglects dependency between the masked positions and suffers from a pretrain-finetune discrepancy. In light of these pros and cons, we propose XLNet, a generalized autoregressive pretraining method that (1) enables learning bidirectional contexts by maximizing the expected likelihood over all permutations of the factorization order and (2) overcomes the limitations of BERT thanks to its autoregressive formulation. Furthermore, XLNet integrates ideas from Transformer-XL, the state-of-the-art autoregressive model, into pretraining. Empirically, XLNet outperforms BERT on 20 tasks, often by a large margin, and achieves state-of-the-art results on 18 tasks including question answering, natural language inference, sentiment analysis, and document ranking.

北京阿比特科技有限公司