MQTT (Message Queuing Telemetry Transport) has become the perfect messaging protocol for IoT (Internet of Things) systems since it is the lightest protocol designed for low bandwidth, high-latency, unreliable networks. Today, the strategy of distributing several MQTT brokers on the networks is widely used because the strategy of using a single broker is no longer efficient. However, in the distributing architectures of MQTT brokers, a subscriber should have prior knowledge about the address of the broker that publishes the data on the topics of interest. In this paper, we tackle this challenge by proposing a mechanism that connects the subscribers to the brokers in a transparent way. The proposed approach, known as TD-MQTT (Transparent Distributed MQTT brokers), requires no prior knowledge of the brokers by the subscribers. The data will be carried automatically from brokers that can change their configuration and location. The transparency will help to use IoT data without worrying about their location and dynamic configuration changes. To evaluate our approach, we compared it with the basic distributed MQTT and the EMMA (MQTT Middle-ware for Edge Computing Applications) approach. The results of the evaluation show that TD-MQTT is much better than the standard MQTT, especially in terms of response time.
In the rapidly evolving field of 3D reconstruction, 3D Gaussian Splatting (3DGS) and 2D Gaussian Splatting (2DGS) represent significant advancements. Although 2DGS compresses 3D Gaussian primitives into 2D Gaussian surfels to effectively enhance mesh extraction quality, this compression can potentially lead to a decrease in rendering quality. Additionally, unreliable densification processes and the calculation of depth through the accumulation of opacity can compromise the detail of mesh extraction. To address this issue, we introduce MVG-Splatting, a solution guided by Multi-View considerations. Specifically, we integrate an optimized method for calculating normals, which, combined with image gradients, helps rectify inconsistencies in the original depth computations. Additionally, utilizing projection strategies akin to those in Multi-View Stereo (MVS), we propose an adaptive quantile-based method that dynamically determines the level of additional densification guided by depth maps, from coarse to fine detail. Experimental evidence demonstrates that our method not only resolves the issues of rendering quality degradation caused by depth discrepancies but also facilitates direct mesh extraction from dense Gaussian point clouds using the Marching Cubes algorithm. This approach significantly enhances the overall fidelity and accuracy of the 3D reconstruction process, ensuring that both the geometric details and visual quality.
Establishing reliable correspondences is essential for registration tasks such as 3D and 2D3D registration. Existing methods commonly leverage geometric or semantic point features to generate potential correspondences. However, these features may face challenges such as large deformation, scale inconsistency, and ambiguous matching problems (e.g., symmetry). Additionally, many previous methods, which rely on single-pass prediction, may struggle with local minima in complex scenarios. To mitigate these challenges, we introduce a diffusion matching model for robust correspondence construction. Our approach treats correspondence estimation as a denoising diffusion process within the doubly stochastic matrix space, which gradually denoises (refines) a doubly stochastic matching matrix to the ground-truth one for high-quality correspondence estimation. It involves a forward diffusion process that gradually introduces Gaussian noise into the ground truth matching matrix and a reverse denoising process that iteratively refines the noisy matching matrix. In particular, the feature extraction from the backbone occurs only once during the inference phase. Our lightweight denoising module utilizes the same feature at each reverse sampling step. Evaluation of our method on both 3D and 2D3D registration tasks confirms its effectiveness. The code is available at //github.com/wuqianliang/Diff-Reg.
Large Language Models (LLMs) have achieved remarkable performance in multiple Natural Language Processing (NLP) tasks. Under the premise that protein sequences constitute the protein language, Protein Language Models(PLMs) have advanced the field of protein engineering. However, as of now, unlike LLMs in NLP, PLMs cannot handle the protein understanding task and the protein generation task simultaneously in the Protein Language Processing (PLP) field. This prompts us to delineate the inherent limitations in current PLMs: (i) the lack of natural language capabilities, (ii) insufficient instruction understanding, and (iii) high training resource demands. To address these challenges, we introduce a training framework to transform any general LLM into a PLM capable of handling multiple PLP tasks. To improve training efficiency, we propose Protein Vocabulary Pruning (PVP) for general LLMs. We construct a multi-task instruction dataset containing 13 million samples with superfamily information, facilitating better modeling of protein sequence-function landscapes. Through these methods, we develop the ProLLaMA model, the first known PLM to handle multiple PLP tasks simultaneously. Experiments show that ProLLaMA achieves state-of-the-art results in the unconditional protein sequence generation task. In the controllable protein sequence generation task, ProLLaMA can design novel proteins with desired functionalities. As for the protein understanding task, ProLLaMA achieves a 62\% exact match rate in superfamily prediction. Codes, model weights, and datasets are available at \url{//github.com/PKU-YuanGroup/ProLLaMA} and \url{//huggingface.co/GreatCaptainNemo}.
Recent work integrating Large Language Models (LLMs) has led to significant improvements in the Knowledge Base Question Answering (KBQA) task. However, we posit that existing KBQA datasets that either have simple questions, use synthetically generated logical forms, or are based on small knowledge base (KB) schemas, do not capture the true complexity of KBQA tasks. To address this, we introduce the SPINACH dataset, an expert-annotated KBQA dataset collected from forum discussions on Wikidata's "Request a Query" forum with 320 decontextualized question-SPARQL pairs. Much more complex than existing datasets, SPINACH calls for strong KBQA systems that do not rely on training data to learn the KB schema, but can dynamically explore large and often incomplete schemas and reason about them. Along with the dataset, we introduce the SPINACH agent, a new KBQA approach that mimics how a human expert would write SPARQLs for such challenging questions. Experiments on existing datasets show SPINACH's capability in KBQA, achieving a new state of the art on the QALD-7, QALD-9 Plus and QALD-10 datasets by 30.1%, 27.0%, and 10.0% in F1, respectively, and coming within 1.6% of the fine-tuned LLaMA SOTA model on WikiWebQuestions. On our new SPINACH dataset, SPINACH agent outperforms all baselines, including the best GPT-4-based KBQA agent, by 38.1% in F1.
Methods to evaluate Large Language Model (LLM) responses and detect inconsistencies, also known as hallucinations, with respect to the provided knowledge, are becoming increasingly important for LLM applications. Current metrics fall short in their ability to provide explainable decisions, systematically check all pieces of information in the response, and are often too computationally expensive to be used in practice. We present GraphEval: a hallucination evaluation framework based on representing information in Knowledge Graph (KG) structures. Our method identifies the specific triples in the KG that are prone to hallucinations and hence provides more insight into where in the response a hallucination has occurred, if at all, than previous methods. Furthermore, using our approach in conjunction with state-of-the-art natural language inference (NLI) models leads to an improvement in balanced accuracy on various hallucination benchmarks, compared to using the raw NLI models. Lastly, we explore the use of GraphEval for hallucination correction by leveraging the structure of the KG, a method we name GraphCorrect, and demonstrate that the majority of hallucinations can indeed be rectified.
Generative Artificial Intelligence has grown exponentially as a result of Large Language Models (LLMs). This has been possible because of the impressive performance of deep learning methods created within the field of Natural Language Processing (NLP) and its subfield Natural Language Generation (NLG), which is the focus of this paper. Within the growing LLM family are the popular GPT-4, Bard and more specifically, tools such as ChatGPT have become a benchmark for other LLMs when solving most of the tasks involved in NLG research. This scenario poses new questions about the next steps for NLG and how the field can adapt and evolve to deal with new challenges in the era of LLMs. To address this, the present paper conducts a review of a representative sample of surveys recently published in NLG. By doing so, we aim to provide the scientific community with a research roadmap to identify which NLG aspects are still not suitably addressed by LLMs, as well as suggest future lines of research that should be addressed going forward.
Deep neural networks (DNNs) have achieved significant success in numerous applications. The remarkable performance of DNNs is largely attributed to the availability of massive, high-quality training datasets. However, processing such massive training data requires huge computational and storage resources. Dataset distillation is a promising solution to this problem, offering the capability to compress a large dataset into a smaller distilled dataset. The model trained on the distilled dataset can achieve comparable performance to the model trained on the whole dataset. While dataset distillation has been demonstrated in image data, none have explored dataset distillation for audio data. In this work, for the first time, we propose a Dataset Distillation Framework for Audio Data (DDFAD). Specifically, we first propose the Fused Differential MFCC (FD-MFCC) as extracted features for audio data. After that, the FD-MFCC is distilled through the matching training trajectory distillation method. Finally, we propose an audio signal reconstruction algorithm based on the Griffin-Lim Algorithm to reconstruct the audio signal from the distilled FD-MFCC. Extensive experiments demonstrate the effectiveness of DDFAD on various audio datasets. In addition, we show that DDFAD has promising application prospects in many applications, such as continual learning and neural architecture search.
Heterogeneous collaborative computing with NPU and CPU has received widespread attention due to its substantial performance benefits. To ensure data confidentiality and integrity during computing, Trusted Execution Environments (TEE) is considered a promising solution because of its comparatively lower overhead. However, existing heterogeneous TEE designs are inefficient for collaborative computing due to fine and different memory granularities between CPU and NPU. 1) The cacheline granularity of CPU TEE intensifies memory pressure due to its extra memory access, and 2) the cacheline granularity MAC of NPU escalates the pressure on the limited memory storage. 3) Data transfer across heterogeneous enclaves relies on the transit of non-secure regions, resulting in cumbersome re-encryption and scheduling. To address these issues, we propose TensorTEE, a unified tensor-granularity heterogeneous TEE for efficient secure collaborative tensor computing. First, we virtually support tensor granularity in CPU TEE to eliminate the off-chip metadata access by detecting and maintaining tensor structures on-chip. Second, we propose tensor-granularity MAC management with predictive execution to avoid computational stalls while eliminating off-chip MAC storage and access. Moreover, based on the unified granularity, we enable direct data transfer without re-encryption and scheduling dilemmas. Our evaluation is built on enhanced Gem5 and a cycle-accurate NPU simulator. The results show that TensorTEE improves the performance of Large Language Model (LLM) training workloads by 4.0x compared to existing work and incurs only 2.1% overhead compared to non-secure training, offering a practical security assurance for LLM training.
In recent years, Face Image Quality Assessment (FIQA) has become an indispensable part of the face recognition system to guarantee the stability and reliability of recognition performance in an unconstrained scenario. For this purpose, the FIQA method should consider both the intrinsic property and the recognizability of the face image. Most previous works aim to estimate the sample-wise embedding uncertainty or pair-wise similarity as the quality score, which only considers the information from partial intra-class. However, these methods ignore the valuable information from the inter-class, which is for estimating to the recognizability of face image. In this work, we argue that a high-quality face image should be similar to its intra-class samples and dissimilar to its inter-class samples. Thus, we propose a novel unsupervised FIQA method that incorporates Similarity Distribution Distance for Face Image Quality Assessment (SDD-FIQA). Our method generates quality pseudo-labels by calculating the Wasserstein Distance (WD) between the intra-class similarity distributions and inter-class similarity distributions. With these quality pseudo-labels, we are capable of training a regression network for quality prediction. Extensive experiments on benchmark datasets demonstrate that the proposed SDD-FIQA surpasses the state-of-the-arts by an impressive margin. Meanwhile, our method shows good generalization across different recognition systems.
ASR (automatic speech recognition) systems like Siri, Alexa, Google Voice or Cortana has become quite popular recently. One of the key techniques enabling the practical use of such systems in people's daily life is deep learning. Though deep learning in computer vision is known to be vulnerable to adversarial perturbations, little is known whether such perturbations are still valid on the practical speech recognition. In this paper, we not only demonstrate such attacks can happen in reality, but also show that the attacks can be systematically conducted. To minimize users' attention, we choose to embed the voice commands into a song, called CommandSong. In this way, the song carrying the command can spread through radio, TV or even any media player installed in the portable devices like smartphones, potentially impacting millions of users in long distance. In particular, we overcome two major challenges: minimizing the revision of a song in the process of embedding commands, and letting the CommandSong spread through the air without losing the voice "command". Our evaluation demonstrates that we can craft random songs to "carry" any commands and the modify is extremely difficult to be noticed. Specially, the physical attack that we play the CommandSongs over the air and record them can success with 94 percentage.