亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

This paper focuses on the need for a rigorous theory of layered control architectures (LCAs) for complex engineered and natural systems, such as power systems, communication networks, autonomous robotics, bacteria, and human sensorimotor control. All deliver extraordinary capabilities, but they lack a coherent theory of analysis and design, partly due to the diverse domains across which LCAs can be found. In contrast, there is a core universal set of control concepts and theory that applies very broadly and accommodates necessary domain-specific specializations. However, control methods are typically used only to design algorithms in components within a larger system designed by others, typically with minimal or no theory. This points towards a need for natural but large extensions of robust performance from control to the full decision and control stack. It is encouraging that the successes of extant architectures from bacteria to the Internet are due to strikingly universal mechanisms and design patterns. This is largely due to convergent evolution by natural selection and not intelligent design, particularly when compared with the sophisticated design of components. Our aim here is to describe the universals of architecture and sketch tentative paths towards a useful design theory.

相關內容

In recent years, the fervent demand for computational power across various domains has prompted hardware manufacturers to introduce specialized computing hardware aimed at enhancing computational capabilities. Particularly, the utilization of tensor hardware supporting low precision has gained increasing prominence in scientific research. However, the use of low-precision tensor hardware for computational acceleration often introduces errors, posing a fundamental challenge of simultaneously achieving effective acceleration while maintaining computational accuracy. This paper proposes improvements in the methodology by incorporating low-precision quantization and employing a residual matrix for error correction and combines vector-wise quantization method.. The key innovation lies in the use of sparse matrices instead of dense matrices when compensating for errors with a residual matrix. By focusing solely on values that may significantly impact relative errors under a specified threshold, this approach aims to control quantization errors while reducing computational complexity. Experimental results demonstrate that this method can effectively control the quantization error while maintaining high acceleration effect.The improved algorithm on the CPU can achieve up to 15\% accuracy improvement while 1.46 times speed improvement.

The problem of benign overfitting asks whether it is possible for a model to perfectly fit noisy training data and still generalize well. We study benign overfitting in two-layer leaky ReLU networks trained with the hinge loss on a binary classification task. We consider input data which can be decomposed into the sum of a common signal and a random noise component, which lie on subspaces orthogonal to one another. We characterize conditions on the signal to noise ratio (SNR) of the model parameters giving rise to benign versus non-benign, or harmful, overfitting: in particular, if the SNR is high then benign overfitting occurs, conversely if the SNR is low then harmful overfitting occurs. We attribute both benign and non-benign overfitting to an approximate margin maximization property and show that leaky ReLU networks trained on hinge loss with Gradient Descent (GD) satisfy this property. In contrast to prior work we do not require near orthogonality conditions on the training data: notably, for input dimension $d$ and training sample size $n$, while prior work shows asymptotically optimal error when $d = \Omega(n^2 \log n)$, here we require only $d = \Omega\left(n \log \frac{1}{\epsilon}\right)$ to obtain error within $\epsilon$ of optimal.

Charts, figures, and text derived from data play an important role in decision making, from data-driven policy development to day-to-day choices informed by online articles. Making sense of, or fact-checking, outputs means understanding how they relate to the underlying data. Even for domain experts with access to the source code and data sets, this poses a significant challenge. In this paper we introduce a new program analysis framework which supports interactive exploration of fine-grained I/O relationships directly through computed outputs, making use of dynamic dependence graphs. Our main contribution is a novel notion in data provenance which we call related inputs, a relation of mutual relevance or "cognacy" which arises between inputs when they contribute to common features of the output. Queries of this form allow readers to ask questions like "What outputs use this data element, and what other data elements are used along with it?". We show how Jonsson and Tarski's concept of conjugate operators on Boolean algebras appropriately characterises the notion of cognacy in a dependence graph, and give a procedure for computing related inputs over such a graph.

This article is concerned with the multilevel Monte Carlo (MLMC) methods for approximating expectations of some functions of the solution to the Heston 3/2-model from mathematical finance, which takes values in $(0, \infty)$ and possesses superlinearly growing drift and diffusion coefficients. To discretize the SDE model, a new Milstein-type scheme is proposed to produce independent sample paths. The proposed scheme can be explicitly solved and is positivity-preserving unconditionally, i.e., for any time step-size $h>0$. This positivity-preserving property for large discretization time steps is particularly desirable in the MLMC setting. Furthermore, a mean-square convergence rate of order one is proved in the non-globally Lipschitz regime, which is not trivial, as the diffusion coefficient grows super-linearly. The obtained order-one convergence in turn promises the desired relevant variance of the multilevel estimator and justifies the optimal complexity $\mathcal{O}(\epsilon^{-2})$ for the MLMC approach, where $\epsilon > 0$ is the required target accuracy. Numerical experiments are finally reported to confirm the theoretical findings.

The need for high-quality automated seizure detection algorithms based on electroencephalography (EEG) becomes ever more pressing with the increasing use of ambulatory and long-term EEG monitoring. Heterogeneity in validation methods of these algorithms influences the reported results and makes comprehensive evaluation and comparison challenging. This heterogeneity concerns in particular the choice of datasets, evaluation methodologies, and performance metrics. In this paper, we propose a unified framework designed to establish standardization in the validation of EEG-based seizure detection algorithms. Based on existing guidelines and recommendations, the framework introduces a set of recommendations and standards related to datasets, file formats, EEG data input content, seizure annotation input and output, cross-validation strategies, and performance metrics. We also propose the 10-20 seizure detection benchmark, a machine-learning benchmark based on public datasets converted to a standardized format. This benchmark defines the machine-learning task as well as reporting metrics. We illustrate the use of the benchmark by evaluating a set of existing seizure detection algorithms. The SzCORE (Seizure Community Open-source Research Evaluation) framework and benchmark are made publicly available along with an open-source software library to facilitate research use, while enabling rigorous evaluation of the clinical significance of the algorithms, fostering a collective effort to more optimally detect seizures to improve the lives of people with epilepsy.

In this paper we describe the efficient numerical implementation of Fractional HBVMs, a class of methods recently introduced for solving systems of fractional differential equations. The reported arguments are implemented in the Matlab code fhbvm, which is made available on the web. An extensive experimentation of the code is reported, to give evidence of its effectiveness.

The innovative application of precise geospatial vegetation forecasting holds immense potential across diverse sectors, including agriculture, forestry, humanitarian aid, and carbon accounting. To leverage the vast availability of satellite imagery for this task, various works have applied deep neural networks for predicting multispectral images in photorealistic quality. However, the important area of vegetation dynamics has not been thoroughly explored. Our study breaks new ground by introducing GreenEarthNet, the first dataset specifically designed for high-resolution vegetation forecasting, and Contextformer, a novel deep learning approach for predicting vegetation greenness from Sentinel 2 satellite images with fine resolution across Europe. Our multi-modal transformer model Contextformer leverages spatial context through a vision backbone and predicts the temporal dynamics on local context patches incorporating meteorological time series in a parameter-efficient manner. The GreenEarthNet dataset features a learned cloud mask and an appropriate evaluation scheme for vegetation modeling. It also maintains compatibility with the existing satellite imagery forecasting dataset EarthNet2021, enabling cross-dataset model comparisons. Our extensive qualitative and quantitative analyses reveal that our methods outperform a broad range of baseline techniques. This includes surpassing previous state-of-the-art models on EarthNet2021, as well as adapted models from time series forecasting and video prediction. To the best of our knowledge, this work presents the first models for continental-scale vegetation modeling at fine resolution able to capture anomalies beyond the seasonal cycle, thereby paving the way for predicting vegetation health and behaviour in response to climate variability and extremes.

Robust Markov Decision Processes (RMDPs) are a widely used framework for sequential decision-making under parameter uncertainty. RMDPs have been extensively studied when the objective is to maximize the discounted return, but little is known for average optimality (optimizing the long-run average of the rewards obtained over time) and Blackwell optimality (remaining discount optimal for all discount factors sufficiently close to 1). In this paper, we prove several foundational results for RMDPs beyond the discounted return. We show that average optimal policies can be chosen stationary and deterministic for sa-rectangular RMDPs but, perhaps surprisingly, that history-dependent (Markovian) policies strictly outperform stationary policies for average optimality in s-rectangular RMDPs. We also study Blackwell optimality for sa-rectangular RMDPs, where we show that {\em approximate} Blackwell optimal policies always exist, although Blackwell optimal policies may not exist. We also provide a sufficient condition for their existence, which encompasses virtually any examples from the literature. We then discuss the connection between average and Blackwell optimality, and we describe several algorithms to compute the optimal average return. Interestingly, our approach leverages the connections between RMDPs and stochastic games.

We present ResMLP, an architecture built entirely upon multi-layer perceptrons for image classification. It is a simple residual network that alternates (i) a linear layer in which image patches interact, independently and identically across channels, and (ii) a two-layer feed-forward network in which channels interact independently per patch. When trained with a modern training strategy using heavy data-augmentation and optionally distillation, it attains surprisingly good accuracy/complexity trade-offs on ImageNet. We will share our code based on the Timm library and pre-trained models.

Deep learning constitutes a recent, modern technique for image processing and data analysis, with promising results and large potential. As deep learning has been successfully applied in various domains, it has recently entered also the domain of agriculture. In this paper, we perform a survey of 40 research efforts that employ deep learning techniques, applied to various agricultural and food production challenges. We examine the particular agricultural problems under study, the specific models and frameworks employed, the sources, nature and pre-processing of data used, and the overall performance achieved according to the metrics used at each work under study. Moreover, we study comparisons of deep learning with other existing popular techniques, in respect to differences in classification or regression performance. Our findings indicate that deep learning provides high accuracy, outperforming existing commonly used image processing techniques.

北京阿比特科技有限公司