Certified safe control is a growing challenge in robotics, especially when performance and safety objectives must be concurrently achieved. In this work, we extend the barrier state (BaS) concept, recently proposed for safe stabilization of continuous time systems, to safety embedded trajectory optimization for discrete time systems using discrete barrier states (DBaS). The constructed DBaS is embedded into the discrete model of the safety-critical system integrating safety objectives into the system's dynamics and performance objectives. Thereby, the control policy is directly supplied by safety-critical information through the barrier state. This allows us to employ the DBaS with differential dynamic programming (DDP) to plan and execute safe optimal trajectories. The proposed algorithm is leveraged on various safety-critical control and planning problems including a differential wheeled robot safe navigation in randomized and complex environments and on a quadrotor to safely perform reaching and tracking tasks. The DBaS-based DDP (DBaS-DDP) is shown to consistently outperform penalty methods commonly used to approximate constrained DDP problems as well as CBF-based safety filters.
This paper presents a control framework on Lie groups by designing the control objective in its Lie algebra. Control on Lie groups is challenging due to its nonlinear nature and difficulties in system parameterization. Existing methods to design the control objective on a Lie group and then derive the gradient for controller design are non-trivial and can result in slow convergence in tracking control. We show that with a proper left-invariant metric, setting the gradient of the cost function as the tracking error in the Lie algebra leads to a quadratic Lyapunov function that enables globally exponential convergence. In the PD control case, we show that our controller can maintain an exponential convergence rate even when the initial error is approaching $\pi$ in SO(3). We also show the merit of this proposed framework in trajectory optimization. The proposed cost function enables the iterative Linear Quadratic Regulator (iLQR) to converge much faster than the Differential Dynamic Programming (DDP) with a well-adopted cost function when the initial trajectory is poorly initialized on SO(3).
Safety is critical in autonomous robotic systems. A safe control law ensures forward invariance of a safe set (a subset in the state space). It has been extensively studied regarding how to derive a safe control law with a control-affine analytical dynamic model. However, in complex environments and tasks, it is challenging and time-consuming to obtain a principled analytical model of the system. In these situations, data-driven learning is extensively used and the learned models are encoded in neural networks. How to formally derive a safe control law with Neural Network Dynamic Models (NNDM) remains unclear due to the lack of computationally tractable methods to deal with these black-box functions. In fact, even finding the control that minimizes an objective for NNDM without any safety constraint is still challenging. In this work, we propose MIND-SIS (Mixed Integer for Neural network Dynamic model with Safety Index Synthesis), the first method to derive safe control laws for NNDM. The method includes two parts: 1) SIS: an algorithm for the offline synthesis of the safety index (also called as barrier function), which uses evolutionary methods and 2) MIND: an algorithm for online computation of the optimal and safe control signal, which solves a constrained optimization using a computationally efficient encoding of neural networks. It has been theoretically proved that MIND-SIS guarantees forward invariance and finite convergence. And it has been numerically validated that MIND-SIS achieves safe and optimal control of NNDM. From our experiments, the optimality gap is less than $10^{-8}$, and the safety constraint violation is $0$.
In this paper we get error bounds for fully discrete approximations of infinite horizon problems via the dynamic programming approach. It is well known that considering a time discretization with a positive step size $h$ an error bound of size $h$ can be proved for the difference between the value function (viscosity solution of the Hamilton-Jacobi-Bellman equation corresponding to the infinite horizon) and the value function of the discrete time problem. However, including also a spatial discretization based on elements of size $k$ an error bound of size $O(k/h)$ can be found in the literature for the error between the value functions of the continuous problem and the fully discrete problem. In this paper we revise the error bound of the fully discrete method and prove, under similar assumptions to those of the time discrete case, that the error of the fully discrete case is in fact $O(h+k)$ which gives first order in time and space for the method. This error bound matches the numerical experiments of many papers in the literature in which the behaviour $1/h$ from the bound $O(k/h)$ have not been observed.
For autonomous quadruped robot navigation in various complex environments, a typical SOTA system is composed of four main modules -- mapper, global planner, local planner, and command-tracking controller -- in a hierarchical manner. In this paper, we build a robust and safe local planner which is designed to generate a velocity plan to track a coarsely planned path from the global planner. Previous works used waypoint-based methods (e.g. Proportional-Differential control and pure pursuit) which simplify the path tracking problem to local point-goal navigation. However, they suffer from frequent collisions in geometrically complex and narrow environments because of two reasons; the global planner uses a coarse and inaccurate model and the local planner is unable to track the global plan sufficiently well. Currently, deep learning methods are an appealing alternative because they can learn safety and path feasibility from experience more accurately. However, existing deep learning methods are not capable of planning for a long horizon. In this work, we propose a learning-based fully autonomous navigation framework composed of three innovative elements: a learned forward dynamics model (FDM), an online sampling-based model-predictive controller, and an informed trajectory sampler (ITS). Using our framework, a quadruped robot can autonomously navigate in various complex environments without a collision and generate a smoother command plan compared to the baseline method. Furthermore, our method can reactively handle unexpected obstacles on the planned path and avoid them. Project page //awesomericky.github.io/projects/FDM_ITS_navigation/.
Developing controllers for obstacle avoidance between polytopes is a challenging and necessary problem for navigation in tight spaces. Traditional approaches can only formulate the obstacle avoidance problem as an offline optimization problem. To address these challenges, we propose a duality-based safety-critical optimal control using nonsmooth control barrier functions for obstacle avoidance between polytopes, which can be solved in real-time with a QP-based optimization problem. A dual optimization problem is introduced to represent the minimum distance between polytopes and the Lagrangian function for the dual form is applied to construct a control barrier function. We validate the obstacle avoidance with the proposed dual formulation for L-shaped (sofa-shaped) controlled robot in a corridor environment. We demonstrate real-time tight obstacle avoidance with non-conservative maneuvers on a moving sofa (piano) problem with nonlinear dynamics.
Collision avoidance is a widely investigated topic in robotic applications. When applying collision avoidance techniques to a mobile robot, how to deal with the spatial structure of the robot still remains a challenge. In this paper, we design a configuration-aware safe control law by solving a Quadratic Programming (QP) with designed Control Barrier Functions (CBFs) constraints, which can safely navigate a mobile robotic arm to a desired region while avoiding collision with environmental obstacles. The advantage of our approach is that it correctly and in an elegant way incorporates the spatial structure of the mobile robotic arm. This is achieved by merging geometric restrictions among mobile robotic arm links into CBFs constraints. Simulations on a rigid rod and the modeled mobile robotic arm are performed to verify the feasibility and time-efficiency of proposed method. Numerical results about the time consuming for different degrees of freedom illustrate that our method scales well with dimension.
Autonomous marine vessels are expected to avoid inter-vessel collisions and comply with the international regulations for safe voyages. This paper presents a stepwise path planning method using stream functions. The dynamic flow of fluids is used as a guidance model, where the collision avoidance in static environments is achieved by applying the circular theorem in the sink flow. We extend this method to dynamic environments by adding vortex flows in the flow field. The stream function is recursively updated to enable on the fly waypoint decisions. The vessel avoids collisions and also complies with several rules of the Convention on the International Regulations for Preventing Collisions at Sea. The method is conceptually and computationally simple and convenient to tune, and yet versatile to handle complex and dense marine traffic with multiple dynamic obstacles. The ship dynamics are taken into account, by using B\'{e}zier curves to generate a sufficiently smooth path with feasible curvature. Numerical simulations are conducted to verify the proposed method.
We consider the classic motion planning problem defined over a roadmap in which a vehicle seeks to find an optimal path from a source to a destination in presence of an attacker who can launch attacks on the vehicle over any edge of the roadmap. The vehicle (defender) has the capability to switch on/off a countermeasure that can detect and permanently disable the attack if it occurs concurrently. We model the problem of traveling along en edge using the framework of a simultaneous zero-sum dynamic game (edge-game) with a stopping state played between an attacker and defender. We characterize the Nash equiliria of an edge-game and provide closed form expressions for two actions per player. We further provide an analytic and approximate expression on the value of an edge-game and characterize conditions under which it grows sub-linearly with the number of stages. We study the sensitivity of Nash equilibrium to the (i) cost of using the countermeasure, (ii) cost of motion and (iii) benefit of disabling the attack. The solution of an edge-game is used to formulate and solve for the secure planning problem known as a meta-game. We design an efficient heuristic by converting the problem to a shortest path problem using the edge cost as the solution of corresponding edge-games. We illustrate our findings through several insightful simulations.
Present-day atomistic simulations generate long trajectories of ever more complex systems. Analyzing these data, discovering metastable states, and uncovering their nature is becoming increasingly challenging. In this paper, we first use the variational approach to conformation dynamics to discover the slowest dynamical modes of the simulations. This allows the different metastable states of the system to be located and organized hierarchically. The physical descriptors that characterize metastable states are discovered by means of a machine learning method. We show in the cases of two proteins, Chignolin and Bovine Pancreatic Trypsin Inhibitor, how such analysis can be effortlessly performed in a matter of seconds. Another strength of our approach is that it can be applied to the analysis of both unbiased and biased simulations.
Dynamic programming (DP) solves a variety of structured combinatorial problems by iteratively breaking them down into smaller subproblems. In spite of their versatility, DP algorithms are usually non-differentiable, which hampers their use as a layer in neural networks trained by backpropagation. To address this issue, we propose to smooth the max operator in the dynamic programming recursion, using a strongly convex regularizer. This allows to relax both the optimal value and solution of the original combinatorial problem, and turns a broad class of DP algorithms into differentiable operators. Theoretically, we provide a new probabilistic perspective on backpropagating through these DP operators, and relate them to inference in graphical models. We derive two particular instantiations of our framework, a smoothed Viterbi algorithm for sequence prediction and a smoothed DTW algorithm for time-series alignment. We showcase these instantiations on two structured prediction tasks and on structured and sparse attention for neural machine translation.