The decomposition-based multi-objective evolutionary algorithm (MOEA/D) transforms a multi-objective optimization problem (MOP) into a set of single-objective subproblems for collaborative optimization. Mismatches between subproblems and solutions can lead to severe performance degradation of MOEA/D. Most existing mismatch coping strategies only work when the $L_{\infty}$ scalarization is used. A mismatch coping strategy that can use any $L_{p}$ scalarization, even when facing MOPs with non-convex Pareto fronts, is of great significance for MOEA/D. This paper uses the global replacement (GR) as the backbone. We analyze how GR can no longer avoid mismatches when $L_{\infty}$ is replaced by another $L_{p}$ with $p\in [1,\infty)$, and find that the $L_p$-based ($1\leq p<\infty$) subproblems having inconsistently large preference regions. When $p$ is set to a small value, some middle subproblems have very small preference regions so that their direction vectors cannot pass through their corresponding preference regions. Therefore, we propose a generalized $L_p$ (G$L_p$) scalarization to ensure that the subproblem's direction vector passes through its preference region. Our theoretical analysis shows that GR can always avoid mismatches when using the G$L_p$ scalarization for any $p\geq 1$. The experimental studies on various MOPs conform to the theoretical analysis.
Beyond-diagonal reconfigurable intelligent surface (BD-RIS) has been proposed recently as a novel and generalized RIS architecture that offers enhanced wave manipulation flexibility and large coverage expansion. However, the beyond-diagonal mathematical model in BD-RIS inevitably introduces additional optimization challenges in beamforming design. In this letter, we derive a closed-form solution for the BD-RIS passive beamforming matrix that maximizes the sum of the effective channel gains among users. We further propose a computationally efficient two-stage beamforming framework to jointly design the active beamforming at the base station and passive beamforming at the BD-RIS to enhance the sum-rate for a BD-RIS aided multi-user multi-antenna network.Numerical results show that our proposed algorithm achieves a higher sum-rate while requiring less computation time compared to state-of-the-art algorithms. The proposed algorithm paves the way for practical beamforming design in BD-RIS aided wireless networks.
In the near term, quantum approximate optimization algorithms (QAOAs) hold great potential to solve combinatorial optimization problems. These are hybrid algorithms, i.e., a combination of quantum and classical algorithms. Several proof-of-concept applications of QAOAs for solving combinatorial problems, such as portfolio optimization, energy optimization in power systems, and job scheduling, have been demonstrated. However, whether QAOAs can efficiently solve optimization problems from classical software engineering, such as test optimization, remains unstudied. To this end, we present the first effort to formulate a software test case optimization problem as a QAOA problem and solve it on quantum computer simulators. To solve bigger test optimization problems that require many qubits, which are unavailable these days, we integrate a problem decomposition strategy with the QAOA. We performed an empirical evaluation with five test case optimization problems and four industrial datasets from ABB, Google, and Orona to compare various configurations of our approach, assess its decomposition strategy of handling large datasets, and compare its performance with classical algorithms (i.e., Genetic Algorithm (GA) and Random Search). Based on the evaluation results, we recommend the best configuration of our approach for test case optimization problems. Also, we demonstrate that our strategy can reach the same effectiveness as GA and outperform GA in two out of five test case optimization problems we conducted.
We consider optimal experimental design (OED) for nonlinear Bayesian inverse problems governed by large-scale partial differential equations (PDEs). For the optimality criteria of Bayesian OED, we consider both expected information gain and summary statistics including the trace and determinant of the information matrix that involves the evaluation of the parameter-to-observable (PtO) map and its derivatives. However, it is prohibitive to compute and optimize these criteria when the PDEs are very expensive to solve, the parameters to estimate are high-dimensional, and the optimization problem is combinatorial, high-dimensional, and non-convex. To address these challenges, we develop an accurate, scalable, and efficient computational framework to accelerate the solution of Bayesian OED. In particular, the framework is developed based on derivative-informed neural operator (DINO) surrogates with proper dimension reduction techniques and a modified swapping greedy algorithm. We demonstrate the high accuracy of the DINO surrogates in the computation of the PtO map and the optimality criteria compared to high-fidelity finite element approximations. We also show that the proposed method is scalable with increasing parameter dimensions. Moreover, we demonstrate that it achieves high efficiency with over 1000X speedup compared to a high-fidelity Bayesian OED solution for a three-dimensional PDE example with tens of thousands of parameters, including both online evaluation and offline construction costs of the surrogates.
We explore some connections between association schemes and the analyses of the semidefinite programming (SDP) based convex relaxations of combinatorial optimization problems in the Lov\'{a}sz--Schrijver lift-and-project hierarchy. Our analysis of the relaxations of the stable set polytope leads to bounds on the clique and stability numbers of some regular graphs reminiscent of classical bounds by Delsarte and Hoffman, as well as the notion of deeply vertex-transitive graphs -- highly symmetric graphs that we show arise naturally from some association schemes. We also study relaxations of the hypergraph matching problem, and determine exactly or provide bounds on the lift-and-project ranks of these relaxations. Our proofs for these results also inspire the study of the general hypermatching pseudo-scheme, which is an association scheme except it is generally non-commutative. We then illustrate the usefulness of obtaining commutative subschemes from non-commutative pseudo-schemes via contraction in this context.
Large language models (LLMs) have recently attracted considerable interest for their ability to perform complex reasoning tasks, such as chain-of-thought reasoning. However, most of the existing approaches to enhance this ability rely heavily on data-driven methods, while neglecting the structural aspects of the model's reasoning capacity. We find that while LLMs can manage individual reasoning steps well, they struggle with maintaining consistency across an entire reasoning chain. To solve this, we introduce 'planning tokens' at the start of each reasoning step, serving as a guide for the model. These token embeddings are then fine-tuned along with the rest of the model parameters. Our approach requires a negligible increase in trainable parameters (just 0.001%) and can be applied through either full fine-tuning or a more parameter-efficient scheme. We demonstrate our method's effectiveness by applying it to three different LLMs, showing notable accuracy improvements across three math word problem datasets w.r.t. plain chain-of-thought fine-tuning baselines.
The exponential growth of large language models (LLMs) has opened up numerous possibilities for multi-modal AGI systems. However, the progress in vision and vision-language foundation models, which are also critical elements of multi-modal AGI, has not kept pace with LLMs. In this work, we design a large-scale vision-language foundation model (InternVL), which scales up the vision foundation model to 6 billion parameters and progressively aligns it with the large language model, using web-scale image-text data from various sources. This model can be broadly applied to and achieve state-of-the-art performance on visual perception tasks such as image-level or pixel-level recognition, vision-language tasks such as zero-shot image/video classification, zero-shot image/video-text retrieval, and link with LLMs to create multi-modal dialogue systems. We hope that our research could contribute to the development of multi-modal large models. Code and models are available at //github.com/OpenGVLab/InternVL.
Recent contrastive representation learning methods rely on estimating mutual information (MI) between multiple views of an underlying context. E.g., we can derive multiple views of a given image by applying data augmentation, or we can split a sequence into views comprising the past and future of some step in the sequence. Contrastive lower bounds on MI are easy to optimize, but have a strong underestimation bias when estimating large amounts of MI. We propose decomposing the full MI estimation problem into a sum of smaller estimation problems by splitting one of the views into progressively more informed subviews and by applying the chain rule on MI between the decomposed views. This expression contains a sum of unconditional and conditional MI terms, each measuring modest chunks of the total MI, which facilitates approximation via contrastive bounds. To maximize the sum, we formulate a contrastive lower bound on the conditional MI which can be approximated efficiently. We refer to our general approach as Decomposed Estimation of Mutual Information (DEMI). We show that DEMI can capture a larger amount of MI than standard non-decomposed contrastive bounds in a synthetic setting, and learns better representations in a vision domain and for dialogue generation.
Multi-relation Question Answering is a challenging task, due to the requirement of elaborated analysis on questions and reasoning over multiple fact triples in knowledge base. In this paper, we present a novel model called Interpretable Reasoning Network that employs an interpretable, hop-by-hop reasoning process for question answering. The model dynamically decides which part of an input question should be analyzed at each hop; predicts a relation that corresponds to the current parsed results; utilizes the predicted relation to update the question representation and the state of the reasoning process; and then drives the next-hop reasoning. Experiments show that our model yields state-of-the-art results on two datasets. More interestingly, the model can offer traceable and observable intermediate predictions for reasoning analysis and failure diagnosis, thereby allowing manual manipulation in predicting the final answer.
We introduce a generic framework that reduces the computational cost of object detection while retaining accuracy for scenarios where objects with varied sizes appear in high resolution images. Detection progresses in a coarse-to-fine manner, first on a down-sampled version of the image and then on a sequence of higher resolution regions identified as likely to improve the detection accuracy. Built upon reinforcement learning, our approach consists of a model (R-net) that uses coarse detection results to predict the potential accuracy gain for analyzing a region at a higher resolution and another model (Q-net) that sequentially selects regions to zoom in. Experiments on the Caltech Pedestrians dataset show that our approach reduces the number of processed pixels by over 50% without a drop in detection accuracy. The merits of our approach become more significant on a high resolution test set collected from YFCC100M dataset, where our approach maintains high detection performance while reducing the number of processed pixels by about 70% and the detection time by over 50%.
High spectral dimensionality and the shortage of annotations make hyperspectral image (HSI) classification a challenging problem. Recent studies suggest that convolutional neural networks can learn discriminative spatial features, which play a paramount role in HSI interpretation. However, most of these methods ignore the distinctive spectral-spatial characteristic of hyperspectral data. In addition, a large amount of unlabeled data remains an unexploited gold mine for efficient data use. Therefore, we proposed an integration of generative adversarial networks (GANs) and probabilistic graphical models for HSI classification. Specifically, we used a spectral-spatial generator and a discriminator to identify land cover categories of hyperspectral cubes. Moreover, to take advantage of a large amount of unlabeled data, we adopted a conditional random field to refine the preliminary classification results generated by GANs. Experimental results obtained using two commonly studied datasets demonstrate that the proposed framework achieved encouraging classification accuracy using a small number of data for training.