亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

This paper analyzes a full discretization of a three-dimensional stochastic Allen-Cahn equation with multiplicative noise. The discretization uses the Euler scheme for temporal discretization and the finite element method for spatial discretization. A key contribution of this work is the introduction of a novel stability estimate for a discrete stochastic convolution, which plays a crucial role in establishing pathwise uniform convergence estimates for fully discrete approximations of nonlinear stochastic parabolic equations. By using this stability estimate in conjunction with the discrete stochastic maximal $L^p$-regularity estimate, the study derives a pathwise uniform convergence rate that encompasses general general spatial $L^q$-norms. Moreover, the theoretical convergence rate is verified by numerical experiments.

相關內容

We present a novel solution method for It\^o stochastic differential equations (SDEs). We subdivide the time interval into sub-intervals, then we use the quadratic polynomials for the approximation between two successive intervals. The main properties of the stochastic numerical methods, e.g. convergence, consistency, and stability are analyzed. We test the proposed method in SDE problem, demonstrating promising results.

Functions with singularities are notoriously difficult to approximate with conventional approximation schemes. In computational applications, they are often resolved with low-order piecewise polynomials, multilevel schemes, or other types of grading strategies. Rational functions are an exception to this rule: for univariate functions with point singularities, such as branch points, rational approximations exist with root-exponential convergence in the rational degree. This is typically enabled by the clustering of poles near the singularity. Both the theory and computational practice of rational functions for function approximation have focused on the univariate case, with extensions to two dimensions via identification with the complex plane. Multivariate rational functions, i.e., quotients of polynomials of several variables, are relatively unexplored in comparison. Yet, apart from a steep increase in theoretical complexity, they also offer a wealth of opportunities. A first observation is that singularities of multivariate rational functions may be continuous curves of poles, rather than isolated ones. By generalizing the clustering of poles from points to curves, we explore constructions of multivariate rational approximations to functions with curves of singularities.

This tutorial describes how to use piecewise cubic B\'ezier curves to draw arbitrarily oriented ellipses and elliptical arcs. The geometric principles discussed here result in strikingly simple interfaces for graphics functions that can draw (approximate) circles, ellipses, and arcs of circles and ellipses. C++ source code listings are included for these functions. Their code size can be relatively small because they are designed to be used with a graphics library or platform that draws B\'ezier curves, and the library or platform is tasked with the actual rendering of the curves.

A high-order numerical method is developed for solving the Cahn-Hilliard-Navier-Stokes equations with the Flory-Huggins potential. The scheme is based on the $Q_k$ finite element with mass lumping on rectangular grids, the second-order convex splitting method, and the pressure correction method. The unique solvability, unconditional stability, and bound-preserving properties are rigorously established. The key to bound-preservation is the discrete $L^1$ estimate of the singular potential. Ample numerical experiments are performed to validate the desired properties of the proposed numerical scheme.

We consider the solution to the biharmonic equation in mixed form discretized by the Hybrid High-Order (HHO) methods. The two resulting second-order elliptic problems can be decoupled via the introduction of a new unknown, corresponding to the boundary value of the solution of the first Laplacian problem. This technique yields a global linear problem that can be solved iteratively via a Krylov-type method. More precisely, at each iteration of the scheme, two second-order elliptic problems have to be solved, and a normal derivative on the boundary has to be computed. In this work, we specialize this scheme for the HHO discretization. To this aim, an explicit technique to compute the discrete normal derivative of an HHO solution of a Laplacian problem is proposed. Moreover, we show that the resulting discrete scheme is well-posed. Finally, a new preconditioner is designed to speed up the convergence of the Krylov method. Numerical experiments assessing the performance of the proposed iterative algorithm on both two- and three-dimensional test cases are presented.

We perform numerical investigation of nearly self-similar blowup of generalized axisymmetric Navier-Stokes equations and Boussinesq system with a time-dependent fractional dimension. The dynamic change of the space dimension is proportional to the ratio R(t)/Z(t), where (R(t),Z(t)) is the position at which the maximum vorticity achieves its global maximum. This choice of space dimension is to ensure that the advection along the r-direction has the same scaling as that along the z-direction, thus preventing formation of two-scale solution structure. For the generalized axisymmetric Navier-Stokes equations with solution dependent viscosity, we show that the solution develops a self-similar blowup with dimension equal to 3.188 and the self-similar profile satisfies the axisymmetric Navier-Stokes equations with constant viscosity. We also study the nearly self-similar blowup of the axisymmetric Boussinesq system with constant viscosity. The generalized axisymmetric Boussinesq system preserves almost all the known properties of the 3D Navier-Stokes equations except for the conservation of angular momentum. We present convincing numerical evidence that the generalized axisymmetric Boussinesq system develops a stable nearly self-similar blowup solution with maximum vorticity increased by O(10^{30}).

This paper considers a joint survival and mixed-effects model to explain the survival time from longitudinal data and high-dimensional covariates. The longitudinal data is modeled using a nonlinear effects model, where the regression function serves as a link function incorporated into a Cox model as a covariate. In that way, the longitudinal data is related to the survival time at a given time. Additionally, the Cox model takes into account the inclusion of high-dimensional covariates. The main objectives of this research are two-fold: first, to identify the relevant covariates that contribute to explaining survival time, and second, to estimate all unknown parameters of the joint model. For that purpose, we consider the maximization of a Lasso penalized likelihood. To tackle the optimization problem, we implement a pre-conditioned stochastic gradient to handle the latent variables of the nonlinear mixed-effects model associated with a proximal operator to manage the non-differentiability of the penalty. We provide relevant simulations that showcase the performance of the proposed variable selection and parameters' estimation method in the joint modeling of a Cox and logistic model.

In this paper, a two-dimensional Dirichlet-to-Neumann (DtN) finite element method (FEM) is developed to analyze the scattering of SH guided waves due to an interface delamination in a bi-material plate. During the finite element analysis, it is necessary to determine the far-field DtN conditions at virtual boundaries where both displacements and tractions are unknown. In this study, firstly, the scattered waves at the virtual boundaries are represented by a superposition of guided waves with unknown scattered coefficients. Secondly, utilizing the mode orthogonality, the unknown tractions at virtual boundaries are expressed in terms of the unknown scattered displacements at virtual boundaries via scattered coefficients. Thirdly, this relationship at virtual boundaries can be finally assembled into the global DtN-FEM matrix to solve the problem. This method is simple and elegant, which has advantages on dimension reduction and needs no absorption medium or perfectly matched layer to suppress the reflected waves compared to traditional FEM. Furthermore, the reflection and transmission coefficients of each guided mode can be directly obtained without post-processing. This proposed DtN-FEM will be compared with boundary element method (BEM), and finally validated for several benchmark problems.

In this paper, we study Physics-Informed Neural Networks (PINN) to approximate solutions to one-dimensional boundary value problems for linear elliptic equations and establish robust error estimates of PINN regardless of the quantities of the coefficients. In particular, we rigorously demonstrate the existence and uniqueness of solutions using the Sobolev space theory based on a variational approach. Deriving $L^2$-contraction estimates, we show that the error, defined as the mean square for differences at the sample points between the true solution and our trial function, is dominated by the training loss. Furthermore, we show that as the quantities of the coefficients for the differential equation increase, the error-to-loss ratio rapidly decreases. Our theoretical and experimental results confirm the robustness of the error regardless of the quantities of the coefficients.

This paper develops a novel Bayesian approach for nonlinear regression with symmetric matrix predictors, often used to encode connectivity of different nodes. Unlike methods that vectorize matrices as predictors that result in a large number of model parameters and unstable estimation, we propose a Bayesian multi-index regression method, resulting in a projection-pursuit-type estimator that leverages the structure of matrix-valued predictors. We establish the model identifiability conditions and impose a sparsity-inducing prior on the projection directions for sparse sampling to prevent overfitting and enhance interpretability of the parameter estimates. Posterior inference is conducted through Bayesian backfitting. The performance of the proposed method is evaluated through simulation studies and a case study investigating the relationship between brain connectivity features and cognitive scores.

北京阿比特科技有限公司