亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

In learning-to-rank problems, a privileged feature is one that is available during model training, but not available at test time. Such features naturally arise in merchandised recommendation systems; for instance, "user clicked this item" as a feature is predictive of "user purchased this item" in the offline data, but is clearly not available during online serving. Another source of privileged features is those that are too expensive to compute online but feasible to be added offline. Privileged features distillation (PFD) refers to a natural idea: train a "teacher" model using all features (including privileged ones) and then use it to train a "student" model that does not use the privileged features. In this paper, we first study PFD empirically on three public ranking datasets and an industrial-scale ranking problem derived from Amazon's logs. We show that PFD outperforms several baselines (no-distillation, pretraining-finetuning, self-distillation, and generalized distillation) on all these datasets. Next, we analyze why and when PFD performs well via both empirical ablation studies and theoretical analysis for linear models. Both investigations uncover an interesting non-monotone behavior: as the predictive power of a privileged feature increases, the performance of the resulting student model initially increases but then decreases. We show the reason for the later decreasing performance is that a very predictive privileged teacher produces predictions with high variance, which lead to high variance student estimates and inferior testing performance.

相關內容

We survey a current, heated debate in the AI research community on whether large pre-trained language models can be said to "understand" language -- and the physical and social situations language encodes -- in any important sense. We describe arguments that have been made for and against such understanding, and key questions for the broader sciences of intelligence that have arisen in light of these arguments. We contend that a new science of intelligence can be developed that will provide insight into distinct modes of understanding, their strengths and limitations, and the challenge of integrating diverse forms of cognition.

Despite significant advances, deep networks remain highly susceptible to adversarial attack. One fundamental challenge is that small input perturbations can often produce large movements in the network's final-layer feature space. In this paper, we define an attack model that abstracts this challenge, to help understand its intrinsic properties. In our model, the adversary may move data an arbitrary distance in feature space but only in random low-dimensional subspaces. We prove such adversaries can be quite powerful: defeating any algorithm that must classify any input it is given. However, by allowing the algorithm to abstain on unusual inputs, we show such adversaries can be overcome when classes are reasonably well-separated in feature space. We further provide strong theoretical guarantees for setting algorithm parameters to optimize over accuracy-abstention trade-offs using data-driven methods. Our results provide new robustness guarantees for nearest-neighbor style algorithms, and also have application to contrastive learning, where we empirically demonstrate the ability of such algorithms to obtain high robust accuracy with low abstention rates. Our model is also motivated by strategic classification, where entities being classified aim to manipulate their observable features to produce a preferred classification, and we provide new insights into that area as well.

Queries with aggregation and arithmetic operations, as well as incomplete data, are common in real-world database, but we lack a good understanding of how they should interact. On the one hand, systems based on SQL provide ad-hoc rules for numerical nulls, on the other, theoretical research largely concentrates on the standard notions of certain and possible answers. In the presence of numerical attributes and aggregates, however, these answers are often meaningless, returning either too little or too much. Our goal is to define a principled framework for databases with numerical nulls and answering queries with arithmetic and aggregations over them. Towards this goal, we assume that missing values in numerical attributes are given by probability distributions associated with marked nulls. This yields a model of probabilistic bag databases in which tuples are not necessarily independent, since nulls can repeat. We provide a general compositional framework for query answering, and then concentrate on queries that resemble standard SQL with arithmetic and aggregation. We show that these queries are measurable, and that their outputs have a finite representation. Moreover, since the classical forms of answers provide little information in the numerical setting, we look at the probability that numerical values in output tuples belong to specific intervals. Even though their exact computation is intractable, we show efficient approximation algorithms to compute such probabilities.

We introduce a new open information extraction (OIE) benchmark for pre-trained language models (LM). Recent studies have demonstrated that pre-trained LMs, such as BERT and GPT, may store linguistic and relational knowledge. In particular, LMs are able to answer ``fill-in-the-blank'' questions when given a pre-defined relation category. Instead of focusing on pre-defined relations, we create an OIE benchmark aiming to fully examine the open relational information present in the pre-trained LMs. We accomplish this by turning pre-trained LMs into zero-shot OIE systems. Surprisingly, pre-trained LMs are able to obtain competitive performance on both standard OIE datasets (CaRB and Re-OIE2016) and two new large-scale factual OIE datasets (TAC KBP-OIE and Wikidata-OIE) that we establish via distant supervision. For instance, the zero-shot pre-trained LMs outperform the F1 score of the state-of-the-art supervised OIE methods on our factual OIE datasets without needing to use any training sets. Our code and datasets are available at //github.com/cgraywang/IELM

Graph neural networks (GNNs) have become one of the most popular research topics in both academia and industry communities for their strong ability in handling irregular graph data. However, large-scale datasets are posing great challenges for deploying GNNs in edge devices with limited resources and model compression techniques have drawn considerable research attention. Existing model compression techniques such as knowledge distillation (KD) mainly focus on convolutional neural networks (CNNs). Only limited attempts have been made recently for distilling knowledge from GNNs in an offline manner. As the performance of the teacher model does not necessarily improve as the number of layers increases in GNNs, selecting an appropriate teacher model will require substantial efforts. To address these challenges, we propose a novel online knowledge distillation framework called Alignahead++ in this paper. Alignahead++ transfers structure and feature information in a student layer to the previous layer of another simultaneously trained student model in an alternating training procedure. Meanwhile, to avoid over-smoothing problem in GNNs, deep supervision is employed in Alignahead++ by adding an auxiliary classifier in each intermediate layer to prevent the collapse of the node feature embeddings. Experimental results on four datasets including PPI, Cora, PubMed and CiteSeer demonstrate that the student performance is consistently boosted in our collaborative training framework without the supervision of a pre-trained teacher model and its effectiveness can generally be improved by increasing the number of students.

Mixup is a data augmentation technique that relies on training using random convex combinations of data points and their labels. In recent years, Mixup has become a standard primitive used in the training of state-of-the-art image classification models due to its demonstrated benefits over empirical risk minimization with regards to generalization and robustness. In this work, we try to explain some of this success from a feature learning perspective. We focus our attention on classification problems in which each class may have multiple associated features (or views) that can be used to predict the class correctly. Our main theoretical results demonstrate that, for a non-trivial class of data distributions with two features per class, training a 2-layer convolutional network using empirical risk minimization can lead to learning only one feature for almost all classes while training with a specific instantiation of Mixup succeeds in learning both features for every class. We also show empirically that these theoretical insights extend to the practical settings of image benchmarks modified to have additional synthetic features.

Spatio-temporal representation learning is critical for video self-supervised representation. Recent approaches mainly use contrastive learning and pretext tasks. However, these approaches learn representation by discriminating sampled instances via feature similarity in the latent space while ignoring the intermediate state of the learned representations, which limits the overall performance. In this work, taking into account the degree of similarity of sampled instances as the intermediate state, we propose a novel pretext task - spatio-temporal overlap rate (STOR) prediction. It stems from the observation that humans are capable of discriminating the overlap rates of videos in space and time. This task encourages the model to discriminate the STOR of two generated samples to learn the representations. Moreover, we employ a joint optimization combining pretext tasks with contrastive learning to further enhance the spatio-temporal representation learning. We also study the mutual influence of each component in the proposed scheme. Extensive experiments demonstrate that our proposed STOR task can favor both contrastive learning and pretext tasks. The joint optimization scheme can significantly improve the spatio-temporal representation in video understanding. The code is available at //github.com/Katou2/CSTP.

Knowledge Distillation (KD) is a widely-used technology to inherit information from cumbersome teacher models to compact student models, consequently realizing model compression and acceleration. Compared with image classification, object detection is a more complex task, and designing specific KD methods for object detection is non-trivial. In this work, we elaborately study the behaviour difference between the teacher and student detection models, and obtain two intriguing observations: First, the teacher and student rank their detected candidate boxes quite differently, which results in their precision discrepancy. Second, there is a considerable gap between the feature response differences and prediction differences between teacher and student, indicating that equally imitating all the feature maps of the teacher is the sub-optimal choice for improving the student's accuracy. Based on the two observations, we propose Rank Mimicking (RM) and Prediction-guided Feature Imitation (PFI) for distilling one-stage detectors, respectively. RM takes the rank of candidate boxes from teachers as a new form of knowledge to distill, which consistently outperforms the traditional soft label distillation. PFI attempts to correlate feature differences with prediction differences, making feature imitation directly help to improve the student's accuracy. On MS COCO and PASCAL VOC benchmarks, extensive experiments are conducted on various detectors with different backbones to validate the effectiveness of our method. Specifically, RetinaNet with ResNet50 achieves 40.4% mAP in MS COCO, which is 3.5% higher than its baseline, and also outperforms previous KD methods.

Clustering is one of the most fundamental and wide-spread techniques in exploratory data analysis. Yet, the basic approach to clustering has not really changed: a practitioner hand-picks a task-specific clustering loss to optimize and fit the given data to reveal the underlying cluster structure. Some types of losses---such as k-means, or its non-linear version: kernelized k-means (centroid based), and DBSCAN (density based)---are popular choices due to their good empirical performance on a range of applications. Although every so often the clustering output using these standard losses fails to reveal the underlying structure, and the practitioner has to custom-design their own variation. In this work we take an intrinsically different approach to clustering: rather than fitting a dataset to a specific clustering loss, we train a recurrent model that learns how to cluster. The model uses as training pairs examples of datasets (as input) and its corresponding cluster identities (as output). By providing multiple types of training datasets as inputs, our model has the ability to generalize well on unseen datasets (new clustering tasks). Our experiments reveal that by training on simple synthetically generated datasets or on existing real datasets, we can achieve better clustering performance on unseen real-world datasets when compared with standard benchmark clustering techniques. Our meta clustering model works well even for small datasets where the usual deep learning models tend to perform worse.

北京阿比特科技有限公司