This paper considers a multi-user downlink scheduling problem with access to the channel state information at the transmitter (CSIT) to minimize the Age-of-Information (AoI) in a non-stationary environment. The non-stationary environment is modelled using a novel adversarial framework. In this setting, we propose a greedy scheduling policy, called MA-CSIT, that takes into account the current channel state information. We establish a finite upper bound on the competitive ratio achieved by the MA-CSIT policy for a small number of users and show that the proposed policy has a better performance guarantee than a recently proposed greedy scheduler that operates without CSIT. In particular, we show that access to the additional channel state information improves the competitive ratio from 8 to 2 in the two-user case and from 18 to 8/3 in the three-user case. Finally, we carry out extensive numerical simulations to quantify the advantage of knowing CSIT in order to minimize the Age-of-Information for an arbitrary number of users.
We consider the analysis and design of distributed wireless networks wherein remote radio heads (RRHs) coordinate transmissions to serve multiple users on the same resource block (RB). Specifically, we analyze two possible multiple-input multiple-output wireless fronthaul solutions: multicast and zero forcing (ZF) beamforming. We develop a statistical model for the fronthaul rate and, coupled with an analysis of the user access rate, we optimize the placement of the RRHs. This model allows us to formulate the location optimization problem with a statistical constraint on fronthaul outage. Our results are cautionary, showing that the fronthaul requires considerable bandwidth to enable joint service to users. This requirement can be relaxed by serving a low number of users on the same RB. Additionally, we show that, with a fixed number of antennas, for the multicast fronthaul, it is prudent to concentrate these antennas on a few RRHs. However, for the ZF beamforming fronthaul, it is better to distribute the antennas on more RRHs. For the parameters chosen, using a ZF beamforming fronthaul improves the typical access rate by approximately 8% compared to multicast. Crucially, our work quantifies the effect of these fronthaul solutions and provides an effective tool for the design of distributed networks.
We consider the problem of minimizing age of information in multihop wireless networks and propose three classes of policies to solve the problem - stationary randomized, age difference, and age debt. For the unicast setting with fixed routes between each source-destination pair, we first develop a procedure to find age optimal Stationary Randomized policies. These policies are easy to implement and allow us to derive closed-form expression for average AoI. Next, for the same unicast setting, we develop a class of heuristic policies, called Age Difference, based on the idea that if neighboring nodes try to reduce their age differential then all nodes will have fresher updates. This approach is useful in practice since it relies only on the local age differential between nodes to make scheduling decisions. Finally, we propose the class of policies called Age Debt, which can handle 1) non-linear AoI cost functions; 2) unicast, multicast and broadcast flows; and 3) no fixed routes specified per flow beforehand. Here, we convert AoI optimization problems into equivalent network stability problems and use Lyapunov drift to find scheduling and routing schemes that stabilize the network. We also provide numerical results comparing our proposed classes of policies with the best known scheduling and routing schemes available in the literature for a wide variety of network settings.
The existing medium access control (MAC) protocol of Wi-Fi networks (i.e., carrier-sense multiple access with collision avoidance (CSMA/CA)) suffers from poor performance in dense deployments due to the increasing number of collisions and long average backoff time in such scenarios. To tackle this issue, we propose an intelligent wireless MAC protocol based on deep learning (DL), referred to as DL-MAC, which significantly improves the spectrum efficiency of Wi-Fi networks. The goal of DL-MAC is to enable not only intelligent channel access but also intelligent rate adaptation. To achieve this goal, we design a deep neural network (DNN) that takes the historical received signal strength indications (RSSIs) as inputs and outputs joint channel access and rate adaptation decision. Notably, the proposed DL-MAC takes the constraints of practical applications into account and the DL-MAC is evaluated using the real wireless data sampled from the actual environments on the 2.4GHz frequency band. The experimental results show that our DL-MAC can achieve around 86\% performance of the global optimal MAC, and around the double performance of the traditional Wi-Fi MAC in the environments of our lab and the Shenzhen Baoan International Airport departure hall.
In this paper, we propose a framework of the mutual information-maximizing (MIM) quantized decoding for low-density parity-check (LDPC) codes by using simple mappings and fixed-point additions. Our decoding method is generic in the sense that it can be applied to LDPC codes with arbitrary degree distributions, and can be implemented based on either the belief propagation (BP) algorithm or the min-sum (MS) algorithm. In particular, we propose the MIM density evolution (MIM-DE) to construct the lookup tables (LUTs) for the node updates. The computational complexity and memory requirements are discussed and compared to the LUT decoder variants. For applications with low-latency requirement, we consider the layered schedule to accelerate the convergence speed of decoding quasi-cyclic LDPC codes. In particular, we develop the layered MIM-DE to design the LUTs based on the MS algorithm, leading to the MIM layered quantized MS (MIM-LQMS) decoder. An optimization method is further introduced to reduce the memory requirement for storing the LUTs. Simulation results show that the MIM quantized decoders outperform the state-of-the-art LUT decoders in the waterfall region with both 3-bit and 4-bit precision over the additive white Gaussian noise channels. Moreover, the 4-bit MIM-LQMS decoder can approach the error performance of the floating-point layered BP decoder within 0.3 dB over the fast fading channels.
Recent empirical work has shown that hierarchical convolutional kernels inspired by convolutional neural networks (CNNs) significantly improve the performance of kernel methods in image classification tasks. A widely accepted explanation for the success of these architectures is that they encode hypothesis classes that are suitable for natural images. However, understanding the precise interplay between approximation and generalization in convolutional architectures remains a challenge. In this paper, we consider the stylized setting of covariates (image pixels) uniformly distributed on the hypercube, and fully characterize the RKHS of kernels composed of single layers of convolution, pooling, and downsampling operations. We then study the gain in sample efficiency of kernel methods using these kernels over standard inner-product kernels. In particular, we show that 1) the convolution layer breaks the curse of dimensionality by restricting the RKHS to `local' functions; 2) local pooling biases learning towards low-frequency functions, which are stable by small translations; 3) downsampling may modify the high-frequency eigenspaces but leaves the low-frequency part approximately unchanged. Notably, our results quantify how choosing an architecture adapted to the target function leads to a large improvement in the sample complexity.
An additive noise channel is considered, in which the distribution of the noise is nonparametric and unknown. The problem of learning encoders and decoders based on noise samples is considered. For uncoded communication systems, the problem of choosing a codebook and possibly also a generalized minimal distance decoder (which is parameterized by a covariance matrix) is addressed. High probability generalization bounds for the error probability loss function, as well as for a hinge-type surrogate loss function are provided. A stochastic-gradient based alternating-minimization algorithm for the latter loss function is proposed. In addition, a Gibbs-based algorithm that gradually expurgates an initial codebook from codewords in order to obtain a smaller codebook with improved error probability is proposed, and bounds on its average empirical error and generalization error, as well as a high probability generalization bound, are stated. Various experiments demonstrate the performance of the proposed algorithms. For coded systems, the problem of maximizing the mutual information between the input and the output with respect to the input distribution is addressed, and uniform convergence bounds for two different classes of input distributions are obtained.
Allocating physical layer resources to users based on channel quality, buffer size, requirements and constraints represents one of the central optimization problems in the management of radio resources. The solution space grows combinatorially with the cardinality of each dimension making it hard to find optimal solutions using an exhaustive search or even classical optimization algorithms given the stringent time requirements. This problem is even more pronounced in MU-MIMO scheduling where the scheduler can assign multiple users to the same time-frequency physical resources. Traditional approaches thus resort to designing heuristics that trade optimality in favor of feasibility of execution. In this work we treat the MU-MIMO scheduling problem as a tree-structured combinatorial problem and, borrowing from the recent successes of AlphaGo Zero, we investigate the feasibility of searching for the best performing solutions using a combination of Monte Carlo Tree Search and Reinforcement Learning. To cater to the nature of the problem at hand, like the lack of an intrinsic ordering of the users as well as the importance of dependencies between combinations of users, we make fundamental modifications to the neural network architecture by introducing the self-attention mechanism. We then demonstrate that the resulting approach is not only feasible but vastly outperforms state-of-the-art heuristic-based scheduling approaches in the presence of measurement uncertainties and finite buffers.
Named entity recognition (NER) and entity linking (EL) are two fundamentally related tasks, since in order to perform EL, first the mentions to entities have to be detected. However, most entity linking approaches disregard the mention detection part, assuming that the correct mentions have been previously detected. In this paper, we perform joint learning of NER and EL to leverage their relatedness and obtain a more robust and generalisable system. For that, we introduce a model inspired by the Stack-LSTM approach (Dyer et al., 2015). We observe that, in fact, doing multi-task learning of NER and EL improves the performance in both tasks when comparing with models trained with individual objectives. Furthermore, we achieve results competitive with the state-of-the-art in both NER and EL.
Methods that align distributions by minimizing an adversarial distance between them have recently achieved impressive results. However, these approaches are difficult to optimize with gradient descent and they often do not converge well without careful hyperparameter tuning and proper initialization. We investigate whether turning the adversarial min-max problem into an optimization problem by replacing the maximization part with its dual improves the quality of the resulting alignment and explore its connections to Maximum Mean Discrepancy. Our empirical results suggest that using the dual formulation for the restricted family of linear discriminators results in a more stable convergence to a desirable solution when compared with the performance of a primal min-max GAN-like objective and an MMD objective under the same restrictions. We test our hypothesis on the problem of aligning two synthetic point clouds on a plane and on a real-image domain adaptation problem on digits. In both cases, the dual formulation yields an iterative procedure that gives more stable and monotonic improvement over time.
We explore deep reinforcement learning methods for multi-agent domains. We begin by analyzing the difficulty of traditional algorithms in the multi-agent case: Q-learning is challenged by an inherent non-stationarity of the environment, while policy gradient suffers from a variance that increases as the number of agents grows. We then present an adaptation of actor-critic methods that considers action policies of other agents and is able to successfully learn policies that require complex multi-agent coordination. Additionally, we introduce a training regimen utilizing an ensemble of policies for each agent that leads to more robust multi-agent policies. We show the strength of our approach compared to existing methods in cooperative as well as competitive scenarios, where agent populations are able to discover various physical and informational coordination strategies.