亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

This paper deals with unit root issues in time series analysis. It has been known for a long time that unit root tests may be flawed when a series although stationary has a root close to unity. That motivated recent papers dedicated to autoregressive processes where the bridge between stability and instability is expressed by means of time-varying coefficients. In this vein the process we consider has a companion matrix $A_{n}$ with spectral radius $\rho(A_{n}) < 1$ satisfying $\rho(A_{n}) \rightarrow 1$, a situation that we describe as `nearly unstable'. The question we investigate is the following: given an observed path supposed to come from a nearly-unstable process, is it possible to test for the `extent of instability', \textit{i.e.} to test how close we are to the unit root? In this regard, we develop a strategy to evaluate $\alpha$ and to test for $\mathcal{H}_0 : "\alpha = \alpha_0"$ against $\mathcal{H}_1 : "\alpha > \alpha_0"$ when $\rho(A_{n})$ lies in an inner $O(n^{-\alpha})$-neighborhood of the unity, for some $0 < \alpha < 1$. Empirical evidence is given (on simulations and real time series) about the advantages of the flexibility induced by such a procedure compared to the usual unit root tests and their binary responses. As a by-product, we also build a symmetric procedure for the usually left out situation where the dominant root lies around $-1$.

相關內容

 Processing 是一門開源編程語言和與之配套的集成開發環境(IDE)的名稱。Processing 在電子藝術和視覺設計社區被用來教授編程基礎,并運用于大量的新媒體和互動藝術作品中。

We consider the approximation of weakly T-coercive operators. The main property to ensure the convergence thereof is the regularity of the approximation (in the vocabulary of discrete approximation schemes). In a previous work the existence of discrete operators $T_n$ which converge to $T$ in a discrete norm was shown to be sufficient to obtain regularity. Although this framework proved usefull for many applications for some instances the former assumption is too strong. Thus in the present article we report a weaker criterium for which the discrete operators $T_n$ only have to converge point-wise, but in addition a weak T-coercivity condition has to be satisfied on the discrete level. We apply the new framework to prove the convergence of certain $H^1$-conforming finite element discretizations of the damped time-harmonic Galbrun's equation, which is used to model the oscillations of stars. A main ingredient in the latter analysis is the uniformly stable invertibility of the divergence operator on certain spaces, which is related to the topic of divergence free elements for the Stokes equation.

We describe a novel algorithm for solving general parametric (nonlinear) eigenvalue problems. Our method has two steps: first, high-accuracy solutions of non-parametric versions of the problem are gathered at some values of the parameters; these are then combined to obtain global approximations of the parametric eigenvalues. To gather the non-parametric data, we use non-intrusive contour-integration-based methods, which, however, cannot track eigenvalues that migrate into/out of the contour as the parameter changes. Special strategies are described for performing the combination-over-parameter step despite having only partial information on such migrating eigenvalues. Moreover, we dedicate a special focus to the approximation of eigenvalues that undergo bifurcations. Finally, we propose an adaptive strategy that allows one to effectively apply our method even without any a priori information on the behavior of the sought-after eigenvalues. Numerical tests are performed, showing that our algorithm can achieve remarkably high approximation accuracy.

We introduce a family of identities that express general linear non-unitary evolution operators as a linear combination of unitary evolution operators, each solving a Hamiltonian simulation problem. This formulation can exponentially enhance the accuracy of the recently introduced linear combination of Hamiltonian simulation (LCHS) method [An, Liu, and Lin, Physical Review Letters, 2023]. For the first time, this approach enables quantum algorithms to solve linear differential equations with both optimal state preparation cost and near-optimal scaling in matrix queries on all parameters.

Efficiently counting or detecting defective items is a crucial task in various fields ranging from biological testing to quality control to streaming algorithms. The \emph{group testing estimation problem} concerns estimating the number of defective elements $d$ in a collection of $n$ total within a given factor. We primarily consider the classical query model, in which a query reveals whether the selected group of elements contains a defective one. We show that any non-adaptive randomized algorithm that estimates the value of $d$ within a constant factor requires $\Omega(\log n)$ queries. This confirms that a known $O(\log n)$ upper bound by Bshouty (2019) is tight and resolves a conjecture by Damaschke and Sheikh Muhammad (2010). Additionally, we prove similar matching upper and lower bounds in the threshold query model.

We present a rigorous and precise analysis of the maximum degree and the average degree in a dynamic duplication-divergence graph model introduced by Sol\'e, Pastor-Satorras et al. in which the graph grows according to a duplication-divergence mechanism, i.e. by iteratively creating a copy of some node and then randomly alternating the neighborhood of a new node with probability $p$. This model captures the growth of some real-world processes e.g. biological or social networks. In this paper, we prove that for some $0 < p < 1$ the maximum degree and the average degree of a duplication-divergence graph on $t$ vertices are asymptotically concentrated with high probability around $t^p$ and $\max\{t^{2 p - 1}, 1\}$, respectively, i.e. they are within at most a polylogarithmic factor from these values with probability at least $1 - t^{-A}$ for any constant $A > 0$.

Robust inferential methods based on divergences measures have shown an appealing trade-off between efficiency and robustness in many different statistical models. In this paper, minimum density power divergence estimators (MDPDEs) for the scale and shape parameters of the log-logistic distribution are considered. The log-logistic is a versatile distribution modeling lifetime data which is commonly adopted in survival analysis and reliability engineering studies when the hazard rate is initially increasing but then it decreases after some point. Further, it is shown that the classical estimators based on maximum likelihood (MLE) are included as a particular case of the MDPDE family. Moreover, the corresponding influence function of the MDPDE is obtained, and its boundlessness is proved, thus leading to robust estimators. A simulation study is carried out to illustrate the slight loss in efficiency of MDPDE with respect to MLE and, at besides, the considerable gain in robustness.

We note a fact that stiff systems or differential equations that have highly oscillatory solutions cannot be solved efficiently using conventional methods. In this paper, we study two new classes of exponential Runge-Kutta (ERK) integrators for efficiently solving stiff systems or highly oscillatory problems. We first present a novel class of explicit modified version of exponential Runge-Kutta (MVERK) methods based on the order conditions. Furthermore, we consider a class of explicit simplified version of exponential Runge-Kutta (SVERK) methods. Numerical results demonstrate the high efficiency of the explicit MVERK integrators and SVERK methods derived in this paper compared with the well-known explicit ERK integrators for stiff systems or highly oscillatory problems in the literature.

As technology continues to advance at a rapid pace, the prevalence of multivariate functional data (MFD) has expanded across diverse disciplines, spanning biology, climatology, finance, and numerous other fields of study. Although MFD are encountered in various fields, the development of methods for hypotheses on mean functions, especially the general linear hypothesis testing (GLHT) problem for such data has been limited. In this study, we propose and study a new global test for the GLHT problem for MFD, which includes the one-way FMANOVA, post hoc, and contrast analysis as special cases. The asymptotic null distribution of the test statistic is shown to be a chi-squared-type mixture dependent of eigenvalues of the heteroscedastic covariance functions. The distribution of the chi-squared-type mixture can be well approximated by a three-cumulant matched chi-squared-approximation with its approximation parameters estimated from the data. By incorporating an adjustment coefficient, the proposed test performs effectively irrespective of the correlation structure in the functional data, even when dealing with a relatively small sample size. Additionally, the proposed test is shown to be root-n consistent, that is, it has a nontrivial power against a local alternative. Simulation studies and a real data example demonstrate finite-sample performance and broad applicability of the proposed test.

Longitudinal studies are often subject to missing data. The ICH E9(R1) addendum addresses the importance of defining a treatment effect estimand with the consideration of intercurrent events. Jump-to-reference (J2R) is one classically envisioned control-based scenario for the treatment effect evaluation using the hypothetical strategy, where the participants in the treatment group after intercurrent events are assumed to have the same disease progress as those with identical covariates in the control group. We establish new estimators to assess the average treatment effect based on a proposed potential outcomes framework under J2R. Various identification formulas are constructed under the assumptions addressed by J2R, motivating estimators that rely on different parts of the observed data distribution. Moreover, we obtain a novel estimator inspired by the efficient influence function, with multiple robustness in the sense that it achieves $n^{1/2}$-consistency if any pairs of multiple nuisance functions are correctly specified, or if the nuisance functions converge at a rate not slower than $n^{-1/4}$ when using flexible modeling approaches. The finite-sample performance of the proposed estimators is validated in simulation studies and an antidepressant clinical trial.

In recent years, object detection has experienced impressive progress. Despite these improvements, there is still a significant gap in the performance between the detection of small and large objects. We analyze the current state-of-the-art model, Mask-RCNN, on a challenging dataset, MS COCO. We show that the overlap between small ground-truth objects and the predicted anchors is much lower than the expected IoU threshold. We conjecture this is due to two factors; (1) only a few images are containing small objects, and (2) small objects do not appear enough even within each image containing them. We thus propose to oversample those images with small objects and augment each of those images by copy-pasting small objects many times. It allows us to trade off the quality of the detector on large objects with that on small objects. We evaluate different pasting augmentation strategies, and ultimately, we achieve 9.7\% relative improvement on the instance segmentation and 7.1\% on the object detection of small objects, compared to the current state of the art method on MS COCO.

北京阿比特科技有限公司