亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Real-life tools for decision-making in many critical domains are based on ranking results. With the increasing awareness of algorithmic fairness, recent works have presented measures for fairness in ranking. Many of those definitions consider the representation of different ``protected groups'', in the top-$k$ ranked items, for any reasonable $k$. Given the protected groups, confirming algorithmic fairness is a simple task. However, the groups' definitions may be unknown in advance. In this paper, we study the problem of detecting groups with biased representation in the top-$k$ ranked items, eliminating the need to pre-define protected groups. The number of such groups possible can be exponential, making the problem hard. We propose efficient search algorithms for two different fairness measures: global representation bounds, and proportional representation. Then we propose a method to explain the bias in the representations of groups utilizing the notion of Shapley values. We conclude with an experimental study, showing the scalability of our approach and demonstrating the usefulness of the proposed algorithms.

相關內容

Enhancing the expressive capacity of deep learning-based time series models with self-supervised pre-training has become ever-increasingly prevalent in time series classification. Even though numerous efforts have been devoted to developing self-supervised models for time series data, we argue that the current methods are not sufficient to learn optimal time series representations due to solely unidirectional encoding over sparse point-wise input units. In this work, we propose TimeMAE, a novel self-supervised paradigm for learning transferrable time series representations based on transformer networks. The distinct characteristics of the TimeMAE lie in processing each time series into a sequence of non-overlapping sub-series via window-slicing partitioning, followed by random masking strategies over the semantic units of localized sub-series. Such a simple yet effective setting can help us achieve the goal of killing three birds with one stone, i.e., (1) learning enriched contextual representations of time series with a bidirectional encoding scheme; (2) increasing the information density of basic semantic units; (3) efficiently encoding representations of time series using transformer networks. Nevertheless, it is a non-trivial to perform reconstructing task over such a novel formulated modeling paradigm. To solve the discrepancy issue incurred by newly injected masked embeddings, we design a decoupled autoencoder architecture, which learns the representations of visible (unmasked) positions and masked ones with two different encoder modules, respectively. Furthermore, we construct two types of informative targets to accomplish the corresponding pretext tasks. One is to create a tokenizer module that assigns a codeword to each masked region, allowing the masked codeword classification (MCC) task to be completed effectively...

Detecting out-of-distribution (OOD) data is critical to building reliable machine learning systems in the open world. Among the existing OOD detection methods, ReAct is famous for its simplicity and efficiency, and has good theoretical analysis. The gap between ID data and OOD data is enlarged by clipping the larger activation value. But the question is, is this operation optimal? Is there a better way to expand the spacing between ID samples and OOD samples in theory? Driven by these questions, we propose the Variational Recified Acitvations method. To verify the effectiveness of our method, we conduct experiments on many benchmark datasets. Experimental results demonstrate that our method outperforms existing state-of-the-art approaches. Meanwhile, our method is easy to implement and does not require additional OOD data or fine-tuning process. We can realize OOD detection in only one forward pass.

We consider Contextual Bandits with Concave Rewards (CBCR), a multi-objective bandit problem where the desired trade-off between the rewards is defined by a known concave objective function, and the reward vector depends on an observed stochastic context. We present the first algorithm with provably vanishing regret for CBCR without restrictions on the policy space, whereas prior works were restricted to finite policy spaces or tabular representations. Our solution is based on a geometric interpretation of CBCR algorithms as optimization algorithms over the convex set of expected rewards spanned by all stochastic policies. Building on Frank-Wolfe analyses in constrained convex optimization, we derive a novel reduction from the CBCR regret to the regret of a scalar-reward bandit problem. We illustrate how to apply the reduction off-the-shelf to obtain algorithms for CBCR with both linear and general reward functions, in the case of non-combinatorial actions. Motivated by fairness in recommendation, we describe a special case of CBCR with rankings and fairness-aware objectives, leading to the first algorithm with regret guarantees for contextual combinatorial bandits with fairness of exposure.

Time series classification is an important problem in real world. Due to its non-stationary property that the distribution changes over time, it remains challenging to build models for generalization to unseen distributions. In this paper, we propose to view the time series classification problem from the distribution perspective. We argue that the temporal complexity attributes to the unknown latent distributions within. To this end, we propose DIVERSIFY to learn generalized representations for time series classification. DIVERSIFY takes an iterative process: it first obtains the worst-case distribution scenario via adversarial training, then matches the distributions of the obtained sub-domains. We also present some theoretical insights. We conduct experiments on gesture recognition, speech commands recognition, wearable stress and affect detection, and sensor-based human activity recognition with a total of seven datasets in different settings. Results demonstrate that DIVERSIFY significantly outperforms other baselines and effectively characterizes the latent distributions by qualitative and quantitative analysis. Code is available at: //github.com/microsoft/robustlearn.

Diffusion models (DMs) have recently emerged as a promising method in image synthesis. However, to date, only little attention has been paid to the detection of DM-generated images, which is critical to prevent adverse impacts on our society. In this work, we address this pressing challenge from two different angles: First, we evaluate the performance of state-of-the-art detectors, which are very effective against images generated by generative adversarial networks (GANs), on a variety of DMs. Second, we analyze DM-generated images in the frequency domain and study different factors that influence the spectral properties of these images. Most importantly, we demonstrate that GANs and DMs produce images with different characteristics, which requires adaptation of existing classifiers to ensure reliable detection. We believe this work provides the foundation and starting point for further research to detect DM deepfakes effectively.

In many real-world situations, data is distributed across multiple self-interested agents. These agents can collaborate to build a machine learning model based on data from multiple agents, potentially reducing the error each experiences. However, sharing models in this way raises questions of fairness: to what extent can the error experienced by one agent be significantly lower than the error experienced by another agent in the same coalition? In this work, we consider two notions of fairness that each may be appropriate in different circumstances: "egalitarian fairness" (which aims to bound how dissimilar error rates can be) and "proportional fairness" (which aims to reward players for contributing more data). We similarly consider two common methods of model aggregation, one where a single model is created for all agents (uniform), and one where an individualized model is created for each agent. For egalitarian fairness, we obtain a tight multiplicative bound on how widely error rates can diverge between agents collaborating (which holds for both aggregation methods). For proportional fairness, we show that the individualized aggregation method always gives a small player error that is upper bounded by proportionality. For uniform aggregation, we show that this upper bound is guaranteed for any individually rational coalition (where no player wishes to leave to do local learning).

Responsibility attribution is a key concept of accountable multi-agent decision making. Given a sequence of actions, responsibility attribution mechanisms quantify the impact of each participating agent to the final outcome. One such popular mechanism is based on actual causality, and it assigns (causal) responsibility based on the actions that were found to be pivotal for the considered outcome. However, the inherent problem of pinpointing actual causes and consequently determining the exact responsibility assignment has shown to be computationally intractable. In this paper, we aim to provide a practical algorithmic solution to the problem of responsibility attribution under a computational budget. We first formalize the problem in the framework of Decentralized Partially Observable Markov Decision Processes (Dec-POMDPs) augmented by a specific class of Structural Causal Models (SCMs). Under this framework, we introduce a Monte Carlo Tree Search (MCTS) type of method which efficiently approximates the agents' degrees of responsibility. This method utilizes the structure of a novel search tree and a pruning technique, both tailored to the problem of responsibility attribution. Other novel components of our method are (a) a child selection policy based on linear scalarization and (b) a backpropagation procedure that accounts for a minimality condition that is typically used to define actual causality. We experimentally evaluate the efficacy of our algorithm through a simulation-based test-bed, which includes three team-based card games.

Humans have a natural instinct to identify unknown object instances in their environments. The intrinsic curiosity about these unknown instances aids in learning about them, when the corresponding knowledge is eventually available. This motivates us to propose a novel computer vision problem called: `Open World Object Detection', where a model is tasked to: 1) identify objects that have not been introduced to it as `unknown', without explicit supervision to do so, and 2) incrementally learn these identified unknown categories without forgetting previously learned classes, when the corresponding labels are progressively received. We formulate the problem, introduce a strong evaluation protocol and provide a novel solution, which we call ORE: Open World Object Detector, based on contrastive clustering and energy based unknown identification. Our experimental evaluation and ablation studies analyze the efficacy of ORE in achieving Open World objectives. As an interesting by-product, we find that identifying and characterizing unknown instances helps to reduce confusion in an incremental object detection setting, where we achieve state-of-the-art performance, with no extra methodological effort. We hope that our work will attract further research into this newly identified, yet crucial research direction.

It is a common paradigm in object detection frameworks to treat all samples equally and target at maximizing the performance on average. In this work, we revisit this paradigm through a careful study on how different samples contribute to the overall performance measured in terms of mAP. Our study suggests that the samples in each mini-batch are neither independent nor equally important, and therefore a better classifier on average does not necessarily mean higher mAP. Motivated by this study, we propose the notion of Prime Samples, those that play a key role in driving the detection performance. We further develop a simple yet effective sampling and learning strategy called PrIme Sample Attention (PISA) that directs the focus of the training process towards such samples. Our experiments demonstrate that it is often more effective to focus on prime samples than hard samples when training a detector. Particularly, On the MSCOCO dataset, PISA outperforms the random sampling baseline and hard mining schemes, e.g. OHEM and Focal Loss, consistently by more than 1% on both single-stage and two-stage detectors, with a strong backbone ResNeXt-101.

Salient object detection is a problem that has been considered in detail and many solutions proposed. In this paper, we argue that work to date has addressed a problem that is relatively ill-posed. Specifically, there is not universal agreement about what constitutes a salient object when multiple observers are queried. This implies that some objects are more likely to be judged salient than others, and implies a relative rank exists on salient objects. The solution presented in this paper solves this more general problem that considers relative rank, and we propose data and metrics suitable to measuring success in a relative objects saliency landscape. A novel deep learning solution is proposed based on a hierarchical representation of relative saliency and stage-wise refinement. We also show that the problem of salient object subitizing can be addressed with the same network, and our approach exceeds performance of any prior work across all metrics considered (both traditional and newly proposed).

北京阿比特科技有限公司