Positive-Unlabeled (PU) learning tries to learn binary classifiers from a few labeled positive examples with many unlabeled ones. Compared with ordinary semi-supervised learning, this task is much more challenging due to the absence of any known negative labels. While existing cost-sensitive-based methods have achieved state-of-the-art performances, they explicitly minimize the risk of classifying unlabeled data as negative samples, which might result in a negative-prediction preference of the classifier. To alleviate this issue, we resort to a label distribution perspective for PU learning in this paper. Noticing that the label distribution of unlabeled data is fixed when the class prior is known, it can be naturally used as learning supervision for the model. Motivated by this, we propose to pursue the label distribution consistency between predicted and ground-truth label distributions, which is formulated by aligning their expectations. Moreover, we further adopt the entropy minimization and Mixup regularization to avoid the trivial solution of the label distribution consistency on unlabeled data and mitigate the consequent confirmation bias. Experiments on three benchmark datasets validate the effectiveness of the proposed method.Code available at: //github.com/Ray-rui/Dist-PU-Positive-Unlabeled-Learning-from-a-Label-Distribution-Perspective.
There is extensive interest in metric learning methods for image retrieval. Many metric learning loss functions focus on learning a correct ranking of training samples, but strongly overfit semantically inconsistent labels and require a large amount of data. To address these shortcomings, we propose a new metric learning method, called contextual loss, which optimizes contextual similarity in addition to cosine similarity. Our contextual loss implicitly enforces semantic consistency among neighbors while converging to the correct ranking. We empirically show that the proposed loss is more robust to label noise, and is less prone to overfitting even when a large portion of train data is withheld. Extensive experiments demonstrate that our method achieves a new state-of-the-art across four image retrieval benchmarks and multiple different evaluation settings. Code is available at: //github.com/Chris210634/metric-learning-using-contextual-similarity
Predictive performance of machine learning models trained with empirical risk minimization (ERM) can degrade considerably under distribution shifts. The presence of spurious correlations in training datasets leads ERM-trained models to display high loss when evaluated on minority groups not presenting such correlations. Extensive attempts have been made to develop methods improving worst-group robustness. However, they require group information for each training input or at least, a validation set with group labels to tune their hyperparameters, which may be expensive to get or unknown a priori. In this paper, we address the challenge of improving group robustness without group annotation during training or validation. To this end, we propose to partition the training dataset into groups based on Gram matrices of features extracted by an ``identification'' model and to apply robust optimization based on these pseudo-groups. In the realistic context where no group labels are available, our experiments show that our approach not only improves group robustness over ERM but also outperforms all recent baselines
Contrastively trained encoders have recently been proven to invert the data-generating process: they encode each input, e.g., an image, into the true latent vector that generated the image (Zimmermann et al., 2021). However, real-world observations often have inherent ambiguities. For instance, images may be blurred or only show a 2D view of a 3D object, so multiple latents could have generated them. This makes the true posterior for the latent vector probabilistic with heteroscedastic uncertainty. In this setup, we extend the common InfoNCE objective and encoders to predict latent distributions instead of points. We prove that these distributions recover the correct posteriors of the data-generating process, including its level of aleatoric uncertainty, up to a rotation of the latent space. In addition to providing calibrated uncertainty estimates, these posteriors allow the computation of credible intervals in image retrieval. They comprise images with the same latent as a given query, subject to its uncertainty.
For medical image segmentation, contrastive learning is the dominant practice to improve the quality of visual representations by contrasting semantically similar and dissimilar pairs of samples. This is enabled by the observation that without accessing ground truth label, negative examples with truly dissimilar anatomical features, if sampled, can significantly improve the performance. In reality, however, these samples may come from similar anatomical features and the models may struggle to distinguish the minority tail-class samples, making the tail classes more prone to misclassification, both of which typically lead to model collapse. In this paper, we propose ARCO, a semi-supervised contrastive learning (CL) framework with stratified group sampling theory in medical image segmentation. In particular, we first propose building ARCO through the concept of variance-reduced estimation, and show that certain variance-reduction techniques are particularly beneficial in medical image segmentation tasks with extremely limited labels. Furthermore, we theoretically prove these sampling techniques are universal in variance reduction. Finally, we experimentally validate our approaches on three benchmark datasets with different label settings, and our methods consistently outperform state-of-the-art semi- and fully-supervised methods. Additionally, we augment the CL frameworks with these sampling techniques and demonstrate significant gains over previous methods. We believe our work is an important step towards semi-supervised medical image segmentation by quantifying the limitation of current self-supervision objectives for accomplishing medical image analysis tasks.
There exist growing interests in intelligent systems for numerous medical imaging, image processing, and computer vision applications, such as face recognition, medical diagnosis, character recognition, and self-driving cars, among others. These applications usually require solving complex classification problems involving complex images with unknown data generative processes. In addition to recent successes of the current classification approaches relying on feature engineering and deep learning, several shortcomings of them, such as the lack of robustness, generalizability, and interpretability, have also been observed. These methods often require extensive training data, are computationally expensive, and are vulnerable to out-of-distribution samples, e.g., adversarial attacks. Recently, an accurate, data-efficient, computationally efficient, and robust transport-based classification approach has been proposed, which describes a generative model-based problem formulation and closed-form solution for a specific category of classification problems. However, all these approaches lack mechanisms to detect test samples outside the class distributions used during training. In real-world settings, where the collected training samples are unable to exhaust or cover all classes, the traditional classification schemes are unable to handle the unseen classes effectively, which is especially an important issue for safety-critical systems, such as self-driving and medical imaging diagnosis. In this work, we propose a method for detecting out-of-class distributions based on the distribution of sliced-Wasserstein distance from the Radon Cumulative Distribution Transform (R-CDT) subspace. We tested our method on the MNIST and two medical image datasets and reported better accuracy than the state-of-the-art methods without an out-of-class distribution detection procedure.
We present prompt distribution learning for effectively adapting a pre-trained vision-language model to address downstream recognition tasks. Our method not only learns low-bias prompts from a few samples but also captures the distribution of diverse prompts to handle the varying visual representations. In this way, we provide high-quality task-related content for facilitating recognition. This prompt distribution learning is realized by an efficient approach that learns the output embeddings of prompts instead of the input embeddings. Thus, we can employ a Gaussian distribution to model them effectively and derive a surrogate loss for efficient training. Extensive experiments on 12 datasets demonstrate that our method consistently and significantly outperforms existing methods. For example, with 1 sample per category, it relatively improves the average result by 9.1% compared to human-crafted prompts.
Classic machine learning methods are built on the $i.i.d.$ assumption that training and testing data are independent and identically distributed. However, in real scenarios, the $i.i.d.$ assumption can hardly be satisfied, rendering the sharp drop of classic machine learning algorithms' performances under distributional shifts, which indicates the significance of investigating the Out-of-Distribution generalization problem. Out-of-Distribution (OOD) generalization problem addresses the challenging setting where the testing distribution is unknown and different from the training. This paper serves as the first effort to systematically and comprehensively discuss the OOD generalization problem, from the definition, methodology, evaluation to the implications and future directions. Firstly, we provide the formal definition of the OOD generalization problem. Secondly, existing methods are categorized into three parts based on their positions in the whole learning pipeline, namely unsupervised representation learning, supervised model learning and optimization, and typical methods for each category are discussed in detail. We then demonstrate the theoretical connections of different categories, and introduce the commonly used datasets and evaluation metrics. Finally, we summarize the whole literature and raise some future directions for OOD generalization problem. The summary of OOD generalization methods reviewed in this survey can be found at //out-of-distribution-generalization.com.
This paper focuses on the expected difference in borrower's repayment when there is a change in the lender's credit decisions. Classical estimators overlook the confounding effects and hence the estimation error can be magnificent. As such, we propose another approach to construct the estimators such that the error can be greatly reduced. The proposed estimators are shown to be unbiased, consistent, and robust through a combination of theoretical analysis and numerical testing. Moreover, we compare the power of estimating the causal quantities between the classical estimators and the proposed estimators. The comparison is tested across a wide range of models, including linear regression models, tree-based models, and neural network-based models, under different simulated datasets that exhibit different levels of causality, different degrees of nonlinearity, and different distributional properties. Most importantly, we apply our approaches to a large observational dataset provided by a global technology firm that operates in both the e-commerce and the lending business. We find that the relative reduction of estimation error is strikingly substantial if the causal effects are accounted for correctly.
In this paper, we study the few-shot multi-label classification for user intent detection. For multi-label intent detection, state-of-the-art work estimates label-instance relevance scores and uses a threshold to select multiple associated intent labels. To determine appropriate thresholds with only a few examples, we first learn universal thresholding experience on data-rich domains, and then adapt the thresholds to certain few-shot domains with a calibration based on nonparametric learning. For better calculation of label-instance relevance score, we introduce label name embedding as anchor points in representation space, which refines representations of different classes to be well-separated from each other. Experiments on two datasets show that the proposed model significantly outperforms strong baselines in both one-shot and five-shot settings.
With the rapid increase of large-scale, real-world datasets, it becomes critical to address the problem of long-tailed data distribution (i.e., a few classes account for most of the data, while most classes are under-represented). Existing solutions typically adopt class re-balancing strategies such as re-sampling and re-weighting based on the number of observations for each class. In this work, we argue that as the number of samples increases, the additional benefit of a newly added data point will diminish. We introduce a novel theoretical framework to measure data overlap by associating with each sample a small neighboring region rather than a single point. The effective number of samples is defined as the volume of samples and can be calculated by a simple formula $(1-\beta^{n})/(1-\beta)$, where $n$ is the number of samples and $\beta \in [0,1)$ is a hyperparameter. We design a re-weighting scheme that uses the effective number of samples for each class to re-balance the loss, thereby yielding a class-balanced loss. Comprehensive experiments are conducted on artificially induced long-tailed CIFAR datasets and large-scale datasets including ImageNet and iNaturalist. Our results show that when trained with the proposed class-balanced loss, the network is able to achieve significant performance gains on long-tailed datasets.