Federated learning (FL) enhances data privacy with collaborative in-situ training on decentralized clients. Nevertheless, FL encounters challenges due to non-independent and identically distributed (non-i.i.d) data, leading to potential performance degradation and hindered convergence. While prior studies predominantly addressed the issue of skewed label distribution, our research addresses a crucial yet frequently overlooked problem known as multi-domain FL. In this scenario, clients' data originate from diverse domains with distinct feature distributions, instead of label distributions. To address the multi-domain problem in FL, we propose a novel method called Federated learning Without normalizations (FedWon). FedWon draws inspiration from the observation that batch normalization (BN) faces challenges in effectively modeling the statistics of multiple domains, while existing normalization techniques possess their own limitations. In order to address these issues, FedWon eliminates the normalization layers in FL and reparameterizes convolution layers with scaled weight standardization. Through extensive experimentation on five datasets and five models, our comprehensive experimental results demonstrate that FedWon surpasses both FedAvg and the current state-of-the-art method (FedBN) across all experimental setups, achieving notable accuracy improvements of more than 10% in certain domains. Furthermore, FedWon is versatile for both cross-silo and cross-device FL, exhibiting robust domain generalization capability, showcasing strong performance even with a batch size as small as 1, thereby catering to resource-constrained devices. Additionally, FedWon can also effectively tackle the challenge of skewed label distribution.
A core ambition of reinforcement learning (RL) is the creation of agents capable of rapid learning in novel tasks. Meta-RL aims to achieve this by directly learning such agents. Black box methods do so by training off-the-shelf sequence models end-to-end. By contrast, task inference methods explicitly infer a posterior distribution over the unknown task, typically using distinct objectives and sequence models designed to enable task inference. Recent work has shown that task inference methods are not necessary for strong performance. However, it remains unclear whether task inference sequence models are beneficial even when task inference objectives are not. In this paper, we present strong evidence that task inference sequence models are still beneficial. In particular, we investigate sequence models with permutation invariant aggregation, which exploit the fact that, due to the Markov property, the task posterior does not depend on the order of data. We empirically confirm the advantage of permutation invariant sequence models without the use of task inference objectives. However, we also find, surprisingly, that there are multiple conditions under which permutation variance remains useful. Therefore, we propose SplAgger, which uses both permutation variant and invariant components to achieve the best of both worlds, outperforming all baselines on continuous control and memory environments.
This study investigates the application of advanced machine learning models, specifically Long Short-Term Memory (LSTM) networks and Gradient Booster models, for accurate energy consumption estimation within a Kubernetes cluster environment. It aims to enhance sustainable computing practices by providing precise predictions of energy usage across various computing nodes. Through meticulous analysis of model performance on both master and worker nodes, the research reveals the strengths and potential applications of these models in promoting energy efficiency. The LSTM model demonstrates remarkable predictive accuracy, particularly in capturing dynamic computing workloads over time, evidenced by low mean squared error (MSE) rates and the ability to closely track actual energy consumption trends. Conversely, the Gradient Booster model showcases robustness and adaptability across different computational environments, despite slightly higher MSE values. The study underscores the complementary nature of these models in advancing sustainable computing practices, suggesting their integration into energy management systems could significantly enhance environmental sustainability in technology operations.
In edge computing, users' service profiles are migrated due to user mobility. Reinforcement learning (RL) frameworks have been proposed to do so, often trained on simulated data. However, existing RL frameworks overlook occasional server failures, which although rare, impact latency-sensitive applications like autonomous driving and real-time obstacle detection. Nevertheless, these failures (rare events), being not adequately represented in historical training data, pose a challenge for data-driven RL algorithms. As it is impractical to adjust failure frequency in real-world applications for training, we introduce FIRE, a framework that adapts to rare events by training a RL policy in an edge computing digital twin environment. We propose ImRE, an importance sampling-based Q-learning algorithm, which samples rare events proportionally to their impact on the value function. FIRE considers delay, migration, failure, and backup placement costs across individual and shared service profiles. We prove ImRE's boundedness and convergence to optimality. Next, we introduce novel deep Q-learning (ImDQL) and actor critic (ImACRE) versions of our algorithm to enhance scalability. We extend our framework to accommodate users with varying risk tolerances. Through trace driven experiments, we show that FIRE reduces costs compared to vanilla RL and the greedy baseline in the event of failures.
Model inversion attacks (MIAs) aim to recover private data from inaccessible training sets of deep learning models, posing a privacy threat. MIAs primarily focus on the white-box scenario where attackers have full access to the model's structure and parameters. However, practical applications are usually in black-box scenarios or label-only scenarios, i.e., the attackers can only obtain the output confidence vectors or labels by accessing the model. Therefore, the attack models in existing MIAs are difficult to effectively train with the knowledge of the target model, resulting in sub-optimal attacks. To the best of our knowledge, we pioneer the research of a powerful and practical attack model in the label-only scenario. In this paper, we develop a novel MIA method, leveraging a conditional diffusion model (CDM) to recover representative samples under the target label from the training set. Two techniques are introduced: selecting an auxiliary dataset relevant to the target model task and using predicted labels as conditions to guide training CDM; and inputting target label, pre-defined guidance strength, and random noise into the trained attack model to generate and correct multiple results for final selection. This method is evaluated using Learned Perceptual Image Patch Similarity as a new metric and as a judgment basis for deciding the values of hyper-parameters. Experimental results show that this method can generate similar and accurate samples to the target label, outperforming generators of previous approaches.
We present Universal Manipulation Interface (UMI) -- a data collection and policy learning framework that allows direct skill transfer from in-the-wild human demonstrations to deployable robot policies. UMI employs hand-held grippers coupled with careful interface design to enable portable, low-cost, and information-rich data collection for challenging bimanual and dynamic manipulation demonstrations. To facilitate deployable policy learning, UMI incorporates a carefully designed policy interface with inference-time latency matching and a relative-trajectory action representation. The resulting learned policies are hardware-agnostic and deployable across multiple robot platforms. Equipped with these features, UMI framework unlocks new robot manipulation capabilities, allowing zero-shot generalizable dynamic, bimanual, precise, and long-horizon behaviors, by only changing the training data for each task. We demonstrate UMI's versatility and efficacy with comprehensive real-world experiments, where policies learned via UMI zero-shot generalize to novel environments and objects when trained on diverse human demonstrations. UMI's hardware and software system is open-sourced at //umi-gripper.github.io.
Multi-agent reinforcement learning (MARL) is a widely used Artificial Intelligence (AI) technique. However, current studies and applications need to address its scalability, non-stationarity, and trustworthiness. This paper aims to review methods and applications and point out research trends and visionary prospects for the next decade. First, this paper summarizes the basic methods and application scenarios of MARL. Second, this paper outlines the corresponding research methods and their limitations on safety, robustness, generalization, and ethical constraints that need to be addressed in the practical applications of MARL. In particular, we believe that trustworthy MARL will become a hot research topic in the next decade. In addition, we suggest that considering human interaction is essential for the practical application of MARL in various societies. Therefore, this paper also analyzes the challenges while MARL is applied to human-machine interaction.
Federated learning (FL) has been developed as a promising framework to leverage the resources of edge devices, enhance customers' privacy, comply with regulations, and reduce development costs. Although many methods and applications have been developed for FL, several critical challenges for practical FL systems remain unaddressed. This paper provides an outlook on FL development, categorized into five emerging directions of FL, namely algorithm foundation, personalization, hardware and security constraints, lifelong learning, and nonstandard data. Our unique perspectives are backed by practical observations from large-scale federated systems for edge devices.
Meta reinforcement learning (meta-RL) extracts knowledge from previous tasks and achieves fast adaptation to new tasks. Despite recent progress, efficient exploration in meta-RL remains a key challenge in sparse-reward tasks, as it requires quickly finding informative task-relevant experiences in both meta-training and adaptation. To address this challenge, we explicitly model an exploration policy learning problem for meta-RL, which is separated from exploitation policy learning, and introduce a novel empowerment-driven exploration objective, which aims to maximize information gain for task identification. We derive a corresponding intrinsic reward and develop a new off-policy meta-RL framework, which efficiently learns separate context-aware exploration and exploitation policies by sharing the knowledge of task inference. Experimental evaluation shows that our meta-RL method significantly outperforms state-of-the-art baselines on various sparse-reward MuJoCo locomotion tasks and more complex sparse-reward Meta-World tasks.
This paper presents a new multi-objective deep reinforcement learning (MODRL) framework based on deep Q-networks. We propose the use of linear and non-linear methods to develop the MODRL framework that includes both single-policy and multi-policy strategies. The experimental results on two benchmark problems including the two-objective deep sea treasure environment and the three-objective mountain car problem indicate that the proposed framework is able to converge to the optimal Pareto solutions effectively. The proposed framework is generic, which allows implementation of different deep reinforcement learning algorithms in different complex environments. This therefore overcomes many difficulties involved with standard multi-objective reinforcement learning (MORL) methods existing in the current literature. The framework creates a platform as a testbed environment to develop methods for solving various problems associated with the current MORL. Details of the framework implementation can be referred to //www.deakin.edu.au/~thanhthi/drl.htm.
This paper describes a general framework for learning Higher-Order Network Embeddings (HONE) from graph data based on network motifs. The HONE framework is highly expressive and flexible with many interchangeable components. The experimental results demonstrate the effectiveness of learning higher-order network representations. In all cases, HONE outperforms recent embedding methods that are unable to capture higher-order structures with a mean relative gain in AUC of $19\%$ (and up to $75\%$ gain) across a wide variety of networks and embedding methods.