亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Let $H$ be a fixed graph. The $H$-Transversal problem, given a graph $G$, asks to remove the smallest number of vertices from $G$ so that $G$ does not contain $H$ as a subgraph. While a simple $|V(H)|$-approximation algorithm exists and is believed to be tight for every $2$-vertex-connected $H$, the best hardness of approximation for any tree was $\Omega(\log |V(H)|)$-inapproximability when $H$ is a star. In this paper, we identify a natural parameter $\Delta$ for every tree $T$ and show that $T$-Transversal is NP-hard to approximate within a factor $(\Delta - 1 -\varepsilon)$ for an arbitrarily small constant $\varepsilon > 0$. As a corollary, we prove that there exists a tree $T$ such that $T$-Transversal is NP-hard to approximate within a factor $\Omega(|V(T)|)$, exponentially improving the best known hardness of approximation for tree transversals.

相關內容

The main problem in the area of property testing is to understand which graph properties are \emph{testable}, which means that with constantly many queries to any input graph $G$, a tester can decide with good probability whether $G$ satisfies the property, or is far from satisfying the property. Testable properties are well understood in the dense model and in the bounded degree model, but little is known in sparse graph classes when graphs are allowed to have unbounded degree. This is the setting of the \emph{sparse model}. We prove that for any proper minor-closed class $\mathcal{G}$, any monotone property (i.e., any property that is closed under taking subgraphs) is testable for graphs from $\mathcal{G}$ in the sparse model. This extends a result of Czumaj and Sohler (FOCS'19), who proved it for monotone properties with finitely many obstructions. Our result implies for instance that for any integers $k$ and $t$, $k$-colorability of $K_t$-minor free graphs is testable in the sparse model. Elek recently proved that monotone properties of bounded degree graphs from minor-closed classes that are closed under disjoint union can be verified by an approximate proof labeling scheme in constant time. We show again that the assumption of bounded degree can be omitted in his result.

We say that a continuous real-valued function $x$ admits the Hurst roughness exponent $H$ if the $p^{\text{th}}$ variation of $x$ converges to zero if $p>1/H$ and to infinity if $p<1/H$. For the sample paths of many stochastic processes, such as fractional Brownian motion, the Hurst roughness exponent exists and equals the standard Hurst parameter. In our main result, we provide a mild condition on the Faber--Schauder coefficients of $x$ under which the Hurst roughness exponent exists and is given as the limit of the classical Gladyshev estimates $\widehat H_n(x)$. This result can be viewed as a strong consistency result for the Gladyshev estimators in an entirely model-free setting, because no assumption whatsoever is made on the possible dynamics of the function $x$. Nonetheless, our proof is probabilistic and relies on a martingale that is hidden in the Faber--Schauder expansion of $x$. Since the Gladyshev estimators are not scale-invariant, we construct several scale-invariant estimators that are derived from the sequence $(\widehat H_n)_{n\in\mathbb N}$. We also discuss how a dynamic change in the Hurst roughness parameter of a time series can be detected. Finally, we extend our results to the case in which the $p^{\text{th}}$ variation of $x$ is defined over a sequence of unequally spaced partitions. Our results are illustrated by means of high-frequency financial time series.

In this work we consider the problem of regret minimization for logistic bandits. The main challenge of logistic bandits is reducing the dependence on a potentially large problem dependent constant $\kappa$ that can at worst scale exponentially with the norm of the unknown parameter $\theta_{\ast}$. Abeille et al. (2021) have applied self-concordance of the logistic function to remove this worst-case dependence providing regret guarantees like $O(d\log^2(\kappa)\sqrt{\dot\mu T}\log(|\mathcal{X}|))$ where $d$ is the dimensionality, $T$ is the time horizon, and $\dot\mu$ is the variance of the best-arm. This work improves upon this bound in the fixed arm setting by employing an experimental design procedure that achieves a minimax regret of $O(\sqrt{d \dot\mu T\log(|\mathcal{X}|)})$. Our regret bound in fact takes a tighter instance (i.e., gap) dependent regret bound for the first time in logistic bandits. We also propose a new warmup sampling algorithm that can dramatically reduce the lower order term in the regret in general and prove that it can replace the lower order term dependency on $\kappa$ to $\log^2(\kappa)$ for some instances. Finally, we discuss the impact of the bias of the MLE on the logistic bandit problem, providing an example where $d^2$ lower order regret (cf., it is $d$ for linear bandits) may not be improved as long as the MLE is used and how bias-corrected estimators may be used to make it closer to $d$.

In this chapter, we discuss recent work on learning sparse approximations to high-dimensional functions on data, where the target functions may be scalar-, vector- or even Hilbert space-valued. Our main objective is to study how the sampling strategy affects the sample complexity -- that is, the number of samples that suffice for accurate and stable recovery -- and to use this insight to obtain optimal or near-optimal sampling procedures. We consider two settings. First, when a target sparse representation is known, in which case we present a near-complete answer based on drawing independent random samples from carefully-designed probability measures. Second, we consider the more challenging scenario when such representation is unknown. In this case, while not giving a full answer, we describe a general construction of sampling measures that improves over standard Monte Carlo sampling. We present examples using algebraic and trigonometric polynomials, and for the former, we also introduce a new procedure for function approximation on irregular (i.e., nontensorial) domains. The effectiveness of this procedure is shown through numerical examples. Finally, we discuss a number of structured sparsity models, and how they may lead to better approximations.

We consider a two-player search game on a tree $T$. One vertex (unknown to the players) is randomly selected as the target. The players alternately guess vertices. If a guess $v$ is not the target, then both players are informed in which subtree of $T \smallsetminus v$ the target lies. The winner is the player who guesses the target. When both players play optimally, we show that each of them wins with probability approximately $1/2$. When one player plays optimally and the other plays randomly, we show that the player with the optimal strategy wins with probability between $9/16$ and $2/3$ (asymptotically). When both players play randomly, we show that each wins with probability between $13/30$ and $17/30$ (asymptotically).

In the F-minor-free deletion problem we want to find a minimum vertex set in a given graph that intersects all minor models of graphs from the family F. The Vertex planarization problem is a special case of F-minor-free deletion for the family F = {K_5, K_{3,3}}. Whenever the family F contains at least one planar graph, then F-minor-free deletion is known to admit a constant-factor approximation algorithm and a polynomial kernelization [Fomin, Lokshtanov, Misra, and Saurabh, FOCS'12]. The Vertex planarization problem is arguably the simplest setting for which F does not contain a planar graph and the existence of a constant-factor approximation or a polynomial kernelization remains a major open problem. In this work we show that Vertex planarization admits an algorithm which is a combination of both approaches. Namely, we present a polynomial A-approximate kernelization, for some constant A > 1, based on the framework of lossy kernelization [Lokshtanov, Panolan, Ramanujan, and Saurabh, STOC'17]. Simply speaking, when given a graph G and integer k, we show how to compute a graph G' on poly(k) vertices so that any B-approximate solution to G' can be lifted to an (A*B)-approximate solution to G, as long as A*B*OPT(G) <= k. In order to achieve this, we develop a framework for sparsification of planar graphs which approximately preserves all separators and near-separators between subsets of the given terminal set. Our result yields an improvement over the state-of-art approximation algorithms for Vertex planarization. The problem admits a polynomial-time O(n^eps)-approximation algorithm, for any eps > 0, and a quasi-polynomial-time (log n)^O(1) approximation algorithm, both randomized [Kawarabayashi and Sidiropoulos, FOCS'17]. By pipelining these algorithms with our approximate kernelization, we improve the approximation factors to respectively O(OPT^eps) and (log OPT)^O(1).

We call a multigraph $(k,d)$-edge colourable if its edge set can be partitioned into $k$ subgraphs of maximum degree at most $d$ and denote as $\chi'_{d}(G)$ the minimum $k$ such that $G$ is $(k,d)$-edge colourable. We prove that for every integer $d$, every multigraph $G$ with maximum degree $\Delta$ is $(\lceil \frac{\Delta}{d} \rceil, d)$-edge colourable if $d$ is even and $(\lceil \frac{3\Delta - 1}{3d - 1} \rceil, d)$-edge colourable if $d$ is odd and these bounds are tight. We also prove that for every simple graph $G$, $\chi'_{d}(G) \in \{ \lceil \frac{\Delta}{d} \rceil, \lceil \frac{\Delta+1}{d} \rceil \}$ and characterize the values of $d$ and $\Delta$ for which it is NP-complete to compute $\chi'_d(G)$. These results generalize several classic results on the chromatic index of a graph by Shannon, Vizing, Holyer, Leven and Galil.

We consider the problem of minimizing regret in an $N$ agent heterogeneous stochastic linear bandits framework, where the agents (users) are similar but not all identical. We model user heterogeneity using two popularly used ideas in practice; (i) A clustering framework where users are partitioned into groups with users in the same group being identical to each other, but different across groups, and (ii) a personalization framework where no two users are necessarily identical, but a user's parameters are close to that of the population average. In the clustered users' setup, we propose a novel algorithm, based on successive refinement of cluster identities and regret minimization. We show that, for any agent, the regret scales as $\mathcal{O}(\sqrt{T/N})$, if the agent is in a `well separated' cluster, or scales as $\mathcal{O}(T^{\frac{1}{2} + \varepsilon}/(N)^{\frac{1}{2} -\varepsilon})$ if its cluster is not well separated, where $\varepsilon$ is positive and arbitrarily close to $0$. Our algorithm is adaptive to the cluster separation, and is parameter free -- it does not need to know the number of clusters, separation and cluster size, yet the regret guarantee adapts to the inherent complexity. In the personalization framework, we introduce a natural algorithm where, the personal bandit instances are initialized with the estimates of the global average model. We show that, an agent $i$ whose parameter deviates from the population average by $\epsilon_i$, attains a regret scaling of $\widetilde{O}(\epsilon_i\sqrt{T})$. This demonstrates that if the user representations are close (small $\epsilon_i)$, the resulting regret is low, and vice-versa. The results are empirically validated and we observe superior performance of our adaptive algorithms over non-adaptive baselines.

In this work, we study a random orthogonal projection based least squares estimator for the stable solution of a multivariate nonparametric regression (MNPR) problem. More precisely, given an integer $d\geq 1$ corresponding to the dimension of the MNPR problem, a positive integer $N\geq 1$ and a real parameter $\alpha\geq -\frac{1}{2},$ we show that a fairly large class of $d-$variate regression functions are well and stably approximated by its random projection over the orthonormal set of tensor product $d-$variate Jacobi polynomials with parameters $(\alpha,\alpha).$ The associated uni-variate Jacobi polynomials have degree at most $N$ and their tensor products are orthonormal over $\mathcal U=[0,1]^d,$ with respect to the associated multivariate Jacobi weights. In particular, if we consider $n$ random sampling points $\mathbf X_i$ following the $d-$variate Beta distribution, with parameters $(\alpha+1,\alpha+1),$ then we give a relation involving $n, N, \alpha$ to ensure that the resulting $(N+1)^d\times (N+1)^d$ random projection matrix is well conditioned. Moreover, we provide squared integrated as well as $L^2-$risk errors of this estimator. Precise estimates of these errors are given in the case where the regression function belongs to an isotropic Sobolev space $H^s(I^d),$ with $s> \frac{d}{2}.$ Also, to handle the general and practical case of an unknown distribution of the $\mathbf X_i,$ we use Shepard's scattered interpolation scheme in order to generate fairly precise approximations of the observed data at $n$ i.i.d. sampling points $\mathbf X_i$ following a $d-$variate Beta distribution. Finally, we illustrate the performance of our proposed multivariate nonparametric estimator by some numerical simulations with synthetic as well as real data.

We study the problem of learning in the stochastic shortest path (SSP) setting, where an agent seeks to minimize the expected cost accumulated before reaching a goal state. We design a novel model-based algorithm EB-SSP that carefully skews the empirical transitions and perturbs the empirical costs with an exploration bonus to guarantee both optimism and convergence of the associated value iteration scheme. We prove that EB-SSP achieves the minimax regret rate $\widetilde{O}(B_{\star} \sqrt{S A K})$, where $K$ is the number of episodes, $S$ is the number of states, $A$ is the number of actions and $B_{\star}$ bounds the expected cumulative cost of the optimal policy from any state, thus closing the gap with the lower bound. Interestingly, EB-SSP obtains this result while being parameter-free, i.e., it does not require any prior knowledge of $B_{\star}$, nor of $T_{\star}$ which bounds the expected time-to-goal of the optimal policy from any state. Furthermore, we illustrate various cases (e.g., positive costs, or general costs when an order-accurate estimate of $T_{\star}$ is available) where the regret only contains a logarithmic dependence on $T_{\star}$, thus yielding the first horizon-free regret bound beyond the finite-horizon MDP setting.

北京阿比特科技有限公司