Deep learning algorithms are increasingly employed at the edge. However, edge devices are resource constrained and thus require efficient deployment of deep neural networks. Pruning methods are a key tool for edge deployment as they can improve storage, compute, memory bandwidth, and energy usage. In this paper we propose a novel accurate pruning technique that allows precise control over the output network size. Our method uses an efficient optimal transportation scheme which we make end-to-end differentiable and which automatically tunes the exploration-exploitation behavior of the algorithm to find accurate sparse sub-networks. We show that our method achieves state-of-the-art performance compared to previous pruning methods on 3 different datasets, using 5 different models, across a wide range of pruning ratios, and with two types of sparsity budgets and pruning granularities.
We consider the problem of private membership aggregation (PMA), in which a user counts the number of times a certain element is stored in a system of independent parties that store arbitrary sets of elements from a universal alphabet. The parties are not allowed to learn which element is being counted by the user. Further, neither the user nor the other parties are allowed to learn the stored elements of each party involved in the process. PMA is a generalization of the recently introduced problem of $K$ private set intersection ($K$-PSI). The $K$-PSI problem considers a set of $M$ parties storing arbitrary sets of elements, and a user who wants to determine if a certain element is repeated at least at $K$ parties out of the $M$ parties without learning which party has the required element and which party does not. To solve the general problem of PMA, we dissect it into four categories based on the privacy requirement and the collusions among databases/parties. We map these problems into equivalent private information retrieval (PIR) problems. We propose achievable schemes for each of the four variants of the problem based on the concept of cross-subspace alignment (CSA). The proposed schemes achieve \emph{linear} communication complexity as opposed to the state-of-the-art $K$-PSI scheme that requires \emph{exponential} complexity even though our PMA problems contain more security and privacy constraints.
Continuous integration and delivery (CI/CD) are nowadays at the core of software development. Their benefits come at the cost of setting up and maintaining the CI/CD pipeline, which requires knowledge and skills often orthogonal to those entailed in other software-related tasks. While several recommender systems have been proposed to support developers across a variety of tasks, little automated support is available when it comes to setting up and maintaining CI/CD pipelines. We present GH-WCOM (GitHub Workflow COMpletion), a Transformer-based approach supporting developers in writing a specific type of CI/CD pipelines, namely GitHub workflows. To deal with such a task, we designed an abstraction process to help the learning of the transformer while still making GH-WCOM able to recommend very peculiar workflow elements such as tool options and scripting elements. Our empirical study shows that GH-WCOM provides up to 34.23% correct predictions, and the model's confidence is a reliable proxy for the recommendations' correctness likelihood.
The modelling of dynamical systems from discrete observations is a challenge faced by modern scientific and engineering data systems. Hamiltonian systems are one such fundamental and ubiquitous class of dynamical systems. Hamiltonian neural networks are state-of-the-art models that unsupervised-ly regress the Hamiltonian of a dynamical system from discrete observations of its vector field under the learning bias of Hamilton's equations. Yet Hamiltonian dynamics are often complicated, especially in higher dimensions where the state space of the Hamiltonian system is large relative to the number of samples. A recently discovered remedy to alleviate the complexity between state variables in the state space is to leverage the additive separability of the Hamiltonian system and embed that additive separability into the Hamiltonian neural network. Following the nomenclature of physics-informed machine learning, we propose three separable Hamiltonian neural networks. These models embed additive separability within Hamiltonian neural networks. The first model uses additive separability to quadratically scale the amount of data for training Hamiltonian neural networks. The second model embeds additive separability within the loss function of the Hamiltonian neural network. The third model embeds additive separability through the architecture of the Hamiltonian neural network using conjoined multilayer perceptions. We empirically compare the three models against state-of-the-art Hamiltonian neural networks, and demonstrate that the separable Hamiltonian neural networks, which alleviate complexity between the state variables, are more effective at regressing the Hamiltonian and its vector field.
Disentangled Representation Learning (DRL) aims to learn a model capable of identifying and disentangling the underlying factors hidden in the observable data in representation form. The process of separating underlying factors of variation into variables with semantic meaning benefits in learning explainable representations of data, which imitates the meaningful understanding process of humans when observing an object or relation. As a general learning strategy, DRL has demonstrated its power in improving the model explainability, controlability, robustness, as well as generalization capacity in a wide range of scenarios such as computer vision, natural language processing, data mining etc. In this article, we comprehensively review DRL from various aspects including motivations, definitions, methodologies, evaluations, applications and model designs. We discuss works on DRL based on two well-recognized definitions, i.e., Intuitive Definition and Group Theory Definition. We further categorize the methodologies for DRL into four groups, i.e., Traditional Statistical Approaches, Variational Auto-encoder Based Approaches, Generative Adversarial Networks Based Approaches, Hierarchical Approaches and Other Approaches. We also analyze principles to design different DRL models that may benefit different tasks in practical applications. Finally, we point out challenges in DRL as well as potential research directions deserving future investigations. We believe this work may provide insights for promoting the DRL research in the community.
The conjoining of dynamical systems and deep learning has become a topic of great interest. In particular, neural differential equations (NDEs) demonstrate that neural networks and differential equation are two sides of the same coin. Traditional parameterised differential equations are a special case. Many popular neural network architectures, such as residual networks and recurrent networks, are discretisations. NDEs are suitable for tackling generative problems, dynamical systems, and time series (particularly in physics, finance, ...) and are thus of interest to both modern machine learning and traditional mathematical modelling. NDEs offer high-capacity function approximation, strong priors on model space, the ability to handle irregular data, memory efficiency, and a wealth of available theory on both sides. This doctoral thesis provides an in-depth survey of the field. Topics include: neural ordinary differential equations (e.g. for hybrid neural/mechanistic modelling of physical systems); neural controlled differential equations (e.g. for learning functions of irregular time series); and neural stochastic differential equations (e.g. to produce generative models capable of representing complex stochastic dynamics, or sampling from complex high-dimensional distributions). Further topics include: numerical methods for NDEs (e.g. reversible differential equations solvers, backpropagation through differential equations, Brownian reconstruction); symbolic regression for dynamical systems (e.g. via regularised evolution); and deep implicit models (e.g. deep equilibrium models, differentiable optimisation). We anticipate this thesis will be of interest to anyone interested in the marriage of deep learning with dynamical systems, and hope it will provide a useful reference for the current state of the art.
Adversarial attack is a technique for deceiving Machine Learning (ML) models, which provides a way to evaluate the adversarial robustness. In practice, attack algorithms are artificially selected and tuned by human experts to break a ML system. However, manual selection of attackers tends to be sub-optimal, leading to a mistakenly assessment of model security. In this paper, a new procedure called Composite Adversarial Attack (CAA) is proposed for automatically searching the best combination of attack algorithms and their hyper-parameters from a candidate pool of \textbf{32 base attackers}. We design a search space where attack policy is represented as an attacking sequence, i.e., the output of the previous attacker is used as the initialization input for successors. Multi-objective NSGA-II genetic algorithm is adopted for finding the strongest attack policy with minimum complexity. The experimental result shows CAA beats 10 top attackers on 11 diverse defenses with less elapsed time (\textbf{6 $\times$ faster than AutoAttack}), and achieves the new state-of-the-art on $l_{\infty}$, $l_{2}$ and unrestricted adversarial attacks.
Data augmentation has been widely used to improve generalizability of machine learning models. However, comparatively little work studies data augmentation for graphs. This is largely due to the complex, non-Euclidean structure of graphs, which limits possible manipulation operations. Augmentation operations commonly used in vision and language have no analogs for graphs. Our work studies graph data augmentation for graph neural networks (GNNs) in the context of improving semi-supervised node-classification. We discuss practical and theoretical motivations, considerations and strategies for graph data augmentation. Our work shows that neural edge predictors can effectively encode class-homophilic structure to promote intra-class edges and demote inter-class edges in given graph structure, and our main contribution introduces the GAug graph data augmentation framework, which leverages these insights to improve performance in GNN-based node classification via edge prediction. Extensive experiments on multiple benchmarks show that augmentation via GAug improves performance across GNN architectures and datasets.
Graph neural networks (GNNs) have been widely used in representation learning on graphs and achieved state-of-the-art performance in tasks such as node classification and link prediction. However, most existing GNNs are designed to learn node representations on the fixed and homogeneous graphs. The limitations especially become problematic when learning representations on a misspecified graph or a heterogeneous graph that consists of various types of nodes and edges. In this paper, we propose Graph Transformer Networks (GTNs) that are capable of generating new graph structures, which involve identifying useful connections between unconnected nodes on the original graph, while learning effective node representation on the new graphs in an end-to-end fashion. Graph Transformer layer, a core layer of GTNs, learns a soft selection of edge types and composite relations for generating useful multi-hop connections so-called meta-paths. Our experiments show that GTNs learn new graph structures, based on data and tasks without domain knowledge, and yield powerful node representation via convolution on the new graphs. Without domain-specific graph preprocessing, GTNs achieved the best performance in all three benchmark node classification tasks against the state-of-the-art methods that require pre-defined meta-paths from domain knowledge.
Attention networks in multimodal learning provide an efficient way to utilize given visual information selectively. However, the computational cost to learn attention distributions for every pair of multimodal input channels is prohibitively expensive. To solve this problem, co-attention builds two separate attention distributions for each modality neglecting the interaction between multimodal inputs. In this paper, we propose bilinear attention networks (BAN) that find bilinear attention distributions to utilize given vision-language information seamlessly. BAN considers bilinear interactions among two groups of input channels, while low-rank bilinear pooling extracts the joint representations for each pair of channels. Furthermore, we propose a variant of multimodal residual networks to exploit eight-attention maps of the BAN efficiently. We quantitatively and qualitatively evaluate our model on visual question answering (VQA 2.0) and Flickr30k Entities datasets, showing that BAN significantly outperforms previous methods and achieves new state-of-the-arts on both datasets.
We investigate a lattice-structured LSTM model for Chinese NER, which encodes a sequence of input characters as well as all potential words that match a lexicon. Compared with character-based methods, our model explicitly leverages word and word sequence information. Compared with word-based methods, lattice LSTM does not suffer from segmentation errors. Gated recurrent cells allow our model to choose the most relevant characters and words from a sentence for better NER results. Experiments on various datasets show that lattice LSTM outperforms both word-based and character-based LSTM baselines, achieving the best results.