When studying the association between treatment and a clinical outcome, a parametric multivariable model of the conditional outcome expectation is often used to adjust for covariates. The treatment coefficient of the outcome model targets a conditional treatment effect. Model-based standardization is typically applied to average the model predictions over the target covariate distribution, and generate a covariate-adjusted estimate of the marginal treatment effect. The standard approach to model-based standardization involves maximum-likelihood estimation and use of the non-parametric bootstrap. We introduce a novel, general-purpose, model-based standardization method based on multiple imputation that is easily applicable when the outcome model is a generalized linear model. We term our proposed approach multiple imputation marginalization (MIM). MIM consists of two main stages: the generation of synthetic datasets and their analysis. MIM accommodates a Bayesian statistical framework, which naturally allows for the principled propagation of uncertainty, integrates the analysis into a probabilistic framework, and allows for the incorporation of prior evidence. We conduct a simulation study to benchmark the finite-sample performance of MIM in conjunction with a parametric outcome model. The simulations provide proof-of-principle in scenarios with binary outcomes, continuous-valued covariates, a logistic outcome model and the marginal log odds ratio as the target effect measure. When parametric modeling assumptions hold, MIM yields unbiased estimation in the target covariate distribution, valid coverage rates, and similar precision and efficiency than the standard approach to model-based standardization.
Missing data often result in undesirable bias and loss of efficiency. These become substantial problems when the response mechanism is nonignorable, such that the response model depends on unobserved variables. It is necessary to estimate the joint distribution of unobserved variables and response indicators to manage nonignorable nonresponse. However, model misspecification and identification issues prevent robust estimates despite careful estimation of the target joint distribution. In this study, we modelled the distribution of the observed parts and derived sufficient conditions for model identifiability, assuming a logistic regression model as the response mechanism and generalised linear models as the main outcome model of interest. More importantly, the derived sufficient conditions are testable with the observed data and do not require any instrumental variables, which are often assumed to guarantee model identifiability but cannot be practically determined beforehand. To analyse missing data, we propose a new imputation method which incorporates verifiable identifiability using only observed data. Furthermore, we present the performance of the proposed estimators in numerical studies and apply the proposed method to two sets of real data: exit polls for the 19th South Korean election data and public data collected from the Korean Survey of Household Finances and Living Conditions.
We study a system that experiences damaging external shocks at stochastic intervals, continuous degradation, and self-healing. The motivation for such a system comes from real-life applications based on micro-electro-mechanical systems (MEMS). The system fails if the cumulative damage exceeds a time-dependent threshold. We develop a preventive maintenance policy to replace the system such that its lifetime is prudently utilized. Further, three variations on the healing pattern have been considered: (i) shocks heal for a fixed duration $\tau$; (ii) a fixed proportion of shocks are non-healable (that is, $\tau=0$); (iii) there are two types of shocks -- self healable shocks heal for a finite duration, and nonhealable shocks inflict a random system degradation. We implement a proposed preventive maintenance policy and compare the optimal replacement times in these new cases to that of the original case where all shocks heal indefinitely and thereby enable the system manager to take necessary decisions in generalized system set-ups.
We propose center-outward superquantile and expected shortfall functions, with applications to multivariate risk measurements, extending the standard notion of value at risk and conditional value at risk from the real line to $\mathbb{R}^d$. Our new concepts are built upon the recent definition of Monge-Kantorovich quantiles based on the theory of optimal transport, and they provide a natural way to characterize multivariate tail probabilities and central areas of point clouds. They preserve the univariate interpretation of a typical observation that lies beyond or ahead a quantile, but in a meaningful multivariate way. We show that they characterize random vectors and their convergence in distribution, which underlines their importance. Our new concepts are illustrated on both simulated and real datasets.
In semantic segmentation, training data down-sampling is commonly performed due to limited resources, the need to adapt image size to the model input, or improve data augmentation. This down-sampling typically employs different strategies for the image data and the annotated labels. Such discrepancy leads to mismatches between the down-sampled color and label images. Hence, the training performance significantly decreases as the down-sampling factor increases. In this paper, we bring together the down-sampling strategies for the image data and the training labels. To that aim, we propose a novel framework for label down-sampling via soft-labeling that better conserves label information after down-sampling. Therefore, fully aligning soft-labels with image data to keep the distribution of the sampled pixels. This proposal also produces reliable annotations for under-represented semantic classes. Altogether, it allows training competitive models at lower resolutions. Experiments show that the proposal outperforms other down-sampling strategies. Moreover, state-of-the-art performance is achieved for reference benchmarks, but employing significantly less computational resources than foremost approaches. This proposal enables competitive research for semantic segmentation under resource constraints.
The discharge summary is a one of critical documents in the patient journey, encompassing all events experienced during hospitalization, including multiple visits, medications, tests, surgery/procedures, and admissions/discharge. Providing a summary of the patient's progress is crucial, as it significantly influences future care and planning. Consequently, clinicians face the laborious and resource-intensive task of manually collecting, organizing, and combining all the necessary data for a discharge summary. Therefore, we propose "NOTE", which stands for "Notable generation Of patient Text summaries through an Efficient approach based on direct preference optimization". NOTE is based on Medical Information Mart for Intensive Care- III dataset and summarizes a single hospitalization of a patient. Patient events are sequentially combined and used to generate a discharge summary for each hospitalization. In the present circumstances, large language models' application programming interfaces (LLMs' APIs) are widely available, but importing and exporting medical data presents significant challenges due to privacy protection policies in healthcare institutions. Moreover, to ensure optimal performance, it is essential to implement a lightweight model for internal server or program within the hospital. Therefore, we utilized DPO and parameter efficient fine tuning (PEFT) techniques to apply a fine-tuning method that guarantees superior performance. To demonstrate the practical application of the developed NOTE, we provide a webpage-based demonstration software. In the future, we will aim to deploy the software available for actual use by clinicians in hospital. NOTE can be utilized to generate various summaries not only discharge summaries but also throughout a patient's journey, thereby alleviating the labor-intensive workload of clinicians and aiming for increased efficiency.
Identifying and characterizing brain fiber bundles can help to understand many diseases and conditions. An important step in this process is the estimation of fiber orientations using Diffusion-Weighted Magnetic Resonance Imaging (DW-MRI). However, obtaining robust orientation estimates demands high-resolution data, leading to lengthy acquisitions that are not always clinically available. In this work, we explore the use of automated angular super resolution from faster acquisitions to overcome this challenge. Using the publicly available Human Connectome Project (HCP) DW-MRI data, we trained a transformer-based deep learning architecture to achieve angular super resolution in fiber orientation distribution (FOD). Our patch-based methodology, FOD-Swin-Net, is able to bring a single-shell reconstruction driven from 32 directions to be comparable to a multi-shell 288 direction FOD reconstruction, greatly reducing the number of required directions on initial acquisition. Evaluations of the reconstructed FOD with Angular Correlation Coefficient and qualitative visualizations reveal superior performance than the state-of-the-art in HCP testing data. Open source code for reproducibility is available at //github.com/MICLab-Unicamp/FOD-Swin-Net.
The aim of this study is to propose and evaluate an advanced ransomware detection and classification method that combines a Stacked Autoencoder (SAE) for precise feature selection with a Long Short Term Memory (LSTM) classifier to enhance ransomware stratification accuracy. The proposed approach involves thorough pre processing of the UGRansome dataset and training an unsupervised SAE for optimal feature selection or fine tuning via supervised learning to elevate the LSTM model's classification capabilities. The study meticulously analyzes the autoencoder's learned weights and activations to identify essential features for distinguishing ransomware families from other malware and creates a streamlined feature set for precise classification. Extensive experiments, including up to 400 epochs and varying learning rates, are conducted to optimize the model's performance. The results demonstrate the outstanding performance of the SAE-LSTM model across all ransomware families, boasting high precision, recall, and F1 score values that underscore its robust classification capabilities. Furthermore, balanced average scores affirm the proposed model's ability to generalize effectively across various malware types. The proposed model achieves an exceptional 99% accuracy in ransomware classification, surpassing the Extreme Gradient Boosting (XGBoost) algorithm primarily due to its effective SAE feature selection mechanism. The model also demonstrates outstanding performance in identifying signature attacks, achieving a 98% accuracy rate.
Effect modification occurs when the impact of the treatment on an outcome varies based on the levels of other covariates known as effect modifiers. Modeling of these effect differences is important for etiological goals and for purposes of optimizing treatment. Structural nested mean models (SNMMs) are useful causal models for estimating the potentially heterogeneous effect of a time-varying exposure on the mean of an outcome in the presence of time-varying confounding. A data-driven approach for selecting the effect modifiers of an exposure may be necessary if these effect modifiers are a priori unknown and need to be identified. Although variable selection techniques are available in the context of estimating conditional average treatment effects using marginal structural models, or in the context of estimating optimal dynamic treatment regimens, all of these methods consider an outcome measured at a single point in time. In the context of an SNMM for repeated outcomes, we propose a doubly robust penalized G-estimator for the causal effect of a time-varying exposure with a simultaneous selection of effect modifiers and use this estimator to analyze the effect modification in a study of hemodiafiltration. We prove the oracle property of our estimator, and conduct a simulation study for evaluation of its performance in finite samples and for verification of its double-robustness property. Our work is motivated by and applied to the study of hemodiafiltration for treating patients with end-stage renal disease at the Centre Hospitalier de l'Universit\'e de Montr\'eal. We apply the proposed method to investigate the effect heterogeneity of dialysis facility on the repeated session-specific hemodiafiltration outcomes.
Intracranial aneurysms are the leading cause of stroke. One of the established treatment approaches is the embolization induced by coil insertion. However, the prediction of treatment and subsequent changed flow characteristics in the aneurysm, is still an open problem. In this work, we present an approach based on patient specific geometry and parameters including a coil representation as inhomogeneous porous medium. The model consists of the volume-averaged Navier-Stokes equations including the non-Newtonian blood rheology. We solve these equations using a problem-adapted lattice Boltzmann method and present a comparison between fully-resolved and volume-averaged simulations. The results indicate the validity of the model. Overall, this workflow allows for patient specific assessment of the flow due to potential treatment.
Analyzing longitudinal data in health studies is challenging due to sparse and error-prone measurements, strong within-individual correlation, missing data and various trajectory shapes. While mixed-effect models (MM) effectively address these challenges, they remain parametric models and may incur computational costs. In contrast, Functional Principal Component Analysis (FPCA) is a non-parametric approach developed for regular and dense functional data that flexibly describes temporal trajectories at a lower computational cost. This paper presents an empirical simulation study evaluating the behaviour of FPCA with sparse and error-prone repeated measures and its robustness under different missing data schemes in comparison with MM. The results show that FPCA is well-suited in the presence of missing at random data caused by dropout, except in scenarios involving most frequent and systematic dropout. Like MM, FPCA fails under missing not at random mechanism. The FPCA was applied to describe the trajectories of four cognitive functions before clinical dementia and contrast them with those of matched controls in a case-control study nested in a population-based aging cohort. The average cognitive declines of future dementia cases showed a sudden divergence from those of their matched controls with a sharp acceleration 5 to 2.5 years prior to diagnosis.