Entropic optimal transport (EOT) presents an effective and computationally viable alternative to unregularized optimal transport (OT), offering diverse applications for large-scale data analysis. In this work, we derive novel statistical bounds for empirical plug-in estimators of the EOT cost and show that their statistical performance in the entropy regularization parameter $\epsilon$ and the sample size $n$ only depends on the simpler of the two probability measures. For instance, under sufficiently smooth costs this yields the parametric rate $n^{-1/2}$ with factor $\epsilon^{-d/2}$, where $d$ is the minimum dimension of the two population measures. This confirms that empirical EOT also adheres to the lower complexity adaptation principle, a hallmark feature only recently identified for unregularized OT. As a consequence of our theory, we show that the empirical entropic Gromov-Wasserstein distance and its unregularized version for measures on Euclidean spaces also obey this principle. Additionally, we comment on computational aspects and complement our findings with Monte Carlo simulations. Our techniques employ empirical process theory and rely on a dual formulation of EOT over a single function class. Crucial to our analysis is the observation that the entropic cost-transformation of a function class does not increase its uniform metric entropy by much.
In object detection, the cost of labeling is much high because it needs not only to confirm the categories of multiple objects in an image but also to accurately determine the bounding boxes of each object. Thus, integrating active learning into object detection will raise pretty positive significance. In this paper, we propose a classification committee for active deep object detection method by introducing a discrepancy mechanism of multiple classifiers for samples' selection when training object detectors. The model contains a main detector and a classification committee. The main detector denotes the target object detector trained from a labeled pool composed of the selected informative images. The role of the classification committee is to select the most informative images according to their uncertainty values from the view of classification, which is expected to focus more on the discrepancy and representative of instances. Specifically, they compute the uncertainty for a specified instance within the image by measuring its discrepancy output by the committee pre-trained via the proposed Maximum Classifiers Discrepancy Group Loss (MCDGL). The most informative images are finally determined by selecting the ones with many high-uncertainty instances. Besides, to mitigate the impact of interference instances, we design a Focus on Positive Instances Loss (FPIL) to make the committee the ability to automatically focus on the representative instances as well as precisely encode their discrepancies for the same instance. Experiments are conducted on Pascal VOC and COCO datasets versus some popular object detectors. And results show that our method outperforms the state-of-the-art active learning methods, which verifies the effectiveness of the proposed method.
Sequential transfer optimization (STO), which aims to improve the optimization performance on a task at hand by exploiting the knowledge captured from several previously-solved optimization tasks stored in a database, has been gaining increasing research attention over the years. However, despite remarkable advances in algorithm design, the development of a systematic benchmark suite for comprehensive comparisons of STO algorithms received far less attention. Existing test problems are either simply generated by assembling other benchmark functions or extended from specific practical problems with limited variations. The relationships between the optimal solutions of the source and target tasks in these problems are always manually configured, limiting their ability to model different relationships presented in real-world problems. Consequently, the good performance achieved by an algorithm on these problems might be biased and could not be generalized to other problems. In light of the above, in this study, we first introduce four rudimentary concepts for characterizing STO problems (STOPs) and present an important problem feature, namely similarity distribution, which quantitatively delineates the relationship between the optima of the source and target tasks. Then, we propose the general design guidelines and a problem generator with superior scalability. Specifically, the similarity distribution of an STOP can be easily customized, enabling a continuous spectrum of representation of the diverse similarity relationships of real-world problems. Lastly, a benchmark suite with 12 STOPs featured by a variety of customized similarity relationships is developed using the proposed generator, which would serve as an arena for STO algorithms and provide more comprehensive evaluation results. The source code of the problem generator is available at //github.com/XmingHsueh/STOP-G.
By incorporating additional contextual information, deep biasing methods have emerged as a promising solution for speech recognition of personalized words. However, for real-world voice assistants, always biasing on such personalized words with high prediction scores can significantly degrade the performance of recognizing common words. To address this issue, we propose an adaptive contextual biasing method based on Context-Aware Transformer Transducer (CATT) that utilizes the biased encoder and predictor embeddings to perform streaming prediction of contextual phrase occurrences. Such prediction is then used to dynamically switch the bias list on and off, enabling the model to adapt to both personalized and common scenarios. Experiments on Librispeech and internal voice assistant datasets show that our approach can achieve up to 6.7% and 20.7% relative reduction in WER and CER compared to the baseline respectively, mitigating up to 96.7% and 84.9% of the relative WER and CER increase for common cases. Furthermore, our approach has a minimal performance impact in personalized scenarios while maintaining a streaming inference pipeline with negligible RTF increase.
Humans perceive the world by concurrently processing and fusing high-dimensional inputs from multiple modalities such as vision and audio. Machine perception models, in stark contrast, are typically modality-specific and optimised for unimodal benchmarks, and hence late-stage fusion of final representations or predictions from each modality (`late-fusion') is still a dominant paradigm for multimodal video classification. Instead, we introduce a novel transformer based architecture that uses `fusion bottlenecks' for modality fusion at multiple layers. Compared to traditional pairwise self-attention, our model forces information between different modalities to pass through a small number of bottleneck latents, requiring the model to collate and condense the most relevant information in each modality and only share what is necessary. We find that such a strategy improves fusion performance, at the same time reducing computational cost. We conduct thorough ablation studies, and achieve state-of-the-art results on multiple audio-visual classification benchmarks including Audioset, Epic-Kitchens and VGGSound. All code and models will be released.
Recent contrastive representation learning methods rely on estimating mutual information (MI) between multiple views of an underlying context. E.g., we can derive multiple views of a given image by applying data augmentation, or we can split a sequence into views comprising the past and future of some step in the sequence. Contrastive lower bounds on MI are easy to optimize, but have a strong underestimation bias when estimating large amounts of MI. We propose decomposing the full MI estimation problem into a sum of smaller estimation problems by splitting one of the views into progressively more informed subviews and by applying the chain rule on MI between the decomposed views. This expression contains a sum of unconditional and conditional MI terms, each measuring modest chunks of the total MI, which facilitates approximation via contrastive bounds. To maximize the sum, we formulate a contrastive lower bound on the conditional MI which can be approximated efficiently. We refer to our general approach as Decomposed Estimation of Mutual Information (DEMI). We show that DEMI can capture a larger amount of MI than standard non-decomposed contrastive bounds in a synthetic setting, and learns better representations in a vision domain and for dialogue generation.
Recent advances in maximizing mutual information (MI) between the source and target have demonstrated its effectiveness in text generation. However, previous works paid little attention to modeling the backward network of MI (i.e., dependency from the target to the source), which is crucial to the tightness of the variational information maximization lower bound. In this paper, we propose Adversarial Mutual Information (AMI): a text generation framework which is formed as a novel saddle point (min-max) optimization aiming to identify joint interactions between the source and target. Within this framework, the forward and backward networks are able to iteratively promote or demote each other's generated instances by comparing the real and synthetic data distributions. We also develop a latent noise sampling strategy that leverages random variations at the high-level semantic space to enhance the long term dependency in the generation process. Extensive experiments based on different text generation tasks demonstrate that the proposed AMI framework can significantly outperform several strong baselines, and we also show that AMI has potential to lead to a tighter lower bound of maximum mutual information for the variational information maximization problem.
Graph neural networks (GNNs) are a popular class of machine learning models whose major advantage is their ability to incorporate a sparse and discrete dependency structure between data points. Unfortunately, GNNs can only be used when such a graph-structure is available. In practice, however, real-world graphs are often noisy and incomplete or might not be available at all. With this work, we propose to jointly learn the graph structure and the parameters of graph convolutional networks (GCNs) by approximately solving a bilevel program that learns a discrete probability distribution on the edges of the graph. This allows one to apply GCNs not only in scenarios where the given graph is incomplete or corrupted but also in those where a graph is not available. We conduct a series of experiments that analyze the behavior of the proposed method and demonstrate that it outperforms related methods by a significant margin.
We advocate the use of implicit fields for learning generative models of shapes and introduce an implicit field decoder for shape generation, aimed at improving the visual quality of the generated shapes. An implicit field assigns a value to each point in 3D space, so that a shape can be extracted as an iso-surface. Our implicit field decoder is trained to perform this assignment by means of a binary classifier. Specifically, it takes a point coordinate, along with a feature vector encoding a shape, and outputs a value which indicates whether the point is outside the shape or not. By replacing conventional decoders by our decoder for representation learning and generative modeling of shapes, we demonstrate superior results for tasks such as shape autoencoding, generation, interpolation, and single-view 3D reconstruction, particularly in terms of visual quality.
High spectral dimensionality and the shortage of annotations make hyperspectral image (HSI) classification a challenging problem. Recent studies suggest that convolutional neural networks can learn discriminative spatial features, which play a paramount role in HSI interpretation. However, most of these methods ignore the distinctive spectral-spatial characteristic of hyperspectral data. In addition, a large amount of unlabeled data remains an unexploited gold mine for efficient data use. Therefore, we proposed an integration of generative adversarial networks (GANs) and probabilistic graphical models for HSI classification. Specifically, we used a spectral-spatial generator and a discriminator to identify land cover categories of hyperspectral cubes. Moreover, to take advantage of a large amount of unlabeled data, we adopted a conditional random field to refine the preliminary classification results generated by GANs. Experimental results obtained using two commonly studied datasets demonstrate that the proposed framework achieved encouraging classification accuracy using a small number of data for training.
Deep neural networks (DNNs) have been found to be vulnerable to adversarial examples resulting from adding small-magnitude perturbations to inputs. Such adversarial examples can mislead DNNs to produce adversary-selected results. Different attack strategies have been proposed to generate adversarial examples, but how to produce them with high perceptual quality and more efficiently requires more research efforts. In this paper, we propose AdvGAN to generate adversarial examples with generative adversarial networks (GANs), which can learn and approximate the distribution of original instances. For AdvGAN, once the generator is trained, it can generate adversarial perturbations efficiently for any instance, so as to potentially accelerate adversarial training as defenses. We apply AdvGAN in both semi-whitebox and black-box attack settings. In semi-whitebox attacks, there is no need to access the original target model after the generator is trained, in contrast to traditional white-box attacks. In black-box attacks, we dynamically train a distilled model for the black-box model and optimize the generator accordingly. Adversarial examples generated by AdvGAN on different target models have high attack success rate under state-of-the-art defenses compared to other attacks. Our attack has placed the first with 92.76% accuracy on a public MNIST black-box attack challenge.