It is broadly known that deep neural networks are susceptible to being fooled by adversarial examples with perturbations imperceptible by humans. Various defenses have been proposed to improve adversarial robustness, among which adversarial training methods are most effective. However, most of these methods treat the training samples independently and demand a tremendous amount of samples to train a robust network, while ignoring the latent structural information among these samples. In this work, we propose a novel Local Structure Preserving (LSP) regularization, which aims to preserve the local structure of the input space in the learned embedding space. In this manner, the attacking effect of adversarial samples lying in the vicinity of clean samples can be alleviated. We show strong empirical evidence that with or without adversarial training, our method consistently improves the performance of adversarial robustness on several image classification datasets compared to the baselines and some state-of-the-art approaches, thus providing promising direction for future research.
Statistical learning and logical reasoning are two major fields of AI expected to be unified for human-like machine intelligence. Most existing work considers how to combine existing logical and statistical systems. However, there is no theory of inference so far explaining how basic approaches to statistical learning and logical reasoning stem from a common principle. Inspired by the fact that much empirical work in neuroscience suggests Bayesian (or probabilistic generative) approaches to brain function including learning and reasoning, we here propose a simple Bayesian model of logical reasoning and statistical learning. The theory is statistically correct as it satisfies Kolmogorov's axioms, is consistent with both Fenstad's representation theorem and maximum likelihood estimation and performs exact Bayesian inference with a linear-time complexity. The theory is logically correct as it is a data-driven generalisation of uncertain reasoning from consistency, possibility, inconsistency and impossibility. The theory is correct in terms of machine learning as its solution to generation and prediction tasks on the MNIST dataset is not only empirically reasonable but also theoretically correct against the K nearest neighbour method. We simply model how data causes symbolic knowledge in terms of its satisfiability in formal logic. Symbolic reasoning emerges as a result of the process of going the causality forwards and backwards. The forward and backward processes correspond to an interpretation and inverse interpretation in formal logic, respectively. The inverse interpretation differentiates our work from the mainstream often referred to as inverse entailment, inverse deduction or inverse resolution. The perspective gives new insights into learning and reasoning towards human-like machine intelligence.
Hierarchical Bayesian models of perception and learning feature prominently in contemporary cognitive neuroscience where, for example, they inform computational concepts of mental disorders. This includes predictive coding and hierarchical Gaussian filtering (HGF), which differ in the nature of hierarchical representations. Predictive coding assumes that higher levels in a given hierarchy influence the state (value) of lower levels. In HGF, however, higher levels determine the rate of change at lower levels. Here, we extend the space of generative models underlying HGF to include a form of nonlinear hierarchical coupling between state values akin to predictive coding and artificial neural networks in general. We derive the update equations corresponding to this generalization of HGF and conceptualize them as connecting a network of (belief) nodes where parent nodes either predict the state of child nodes or their rate of change. This enables us to (1) create modular architectures with generic computational steps in each node of the network, and (2) disclose the hierarchical message passing implied by generalized HGF models and to compare this to comparable schemes under predictive coding. We find that the algorithmic architecture instantiated by the generalized HGF is largely compatible with that of predictive coding but extends it with some unique predictions which arise from precision and volatility related computations. Our developments enable highly flexible implementations of hierarchical Bayesian models for empirical data analysis and are available as open source software.
We provide a new variational definition for the spread of an orbital under periodic boundary conditions (PBCs) that is continuous with respect to the gauge, consistent in the thermodynamic limit, well-suited to diffuse orbitals, and systematically adaptable to schemes computing localized Wannier functions. Existing definitions do not satisfy all these desiderata, partly because they depend on an "orbital center"-an ill-defined concept under PBCs. Based on this theoretical development, we showcase a robust and efficient (10x-70x fewer iterations) localization scheme across a range of materials.
We offer a study that connects robust discriminative classifiers trained with adversarial training (AT) with generative modeling in the form of Energy-based Models (EBM). We do so by decomposing the loss of a discriminative classifier and showing that the discriminative model is also aware of the input data density. Though a common assumption is that adversarial points leave the manifold of the input data, our study finds out that, surprisingly, untargeted adversarial points in the input space are very likely under the generative model hidden inside the discriminative classifier -- have low energy in the EBM. We present two evidence: untargeted attacks are even more likely than the natural data and their likelihood increases as the attack strength increases. This allows us to easily detect them and craft a novel attack called High-Energy PGD that fools the classifier yet has energy similar to the data set.
Knowledge graphs represent factual knowledge about the world as relationships between concepts and are critical for intelligent decision making in enterprise applications. New knowledge is inferred from the existing facts in the knowledge graphs by encoding the concepts and relations into low-dimensional feature vector representations. The most effective representations for this task, called Knowledge Graph Embeddings (KGE), are learned through neural network architectures. Due to their impressive predictive performance, they are increasingly used in high-impact domains like healthcare, finance and education. However, are the black-box KGE models adversarially robust for use in domains with high stakes? This thesis argues that state-of-the-art KGE models are vulnerable to data poisoning attacks, that is, their predictive performance can be degraded by systematically crafted perturbations to the training knowledge graph. To support this argument, two novel data poisoning attacks are proposed that craft input deletions or additions at training time to subvert the learned model's performance at inference time. These adversarial attacks target the task of predicting the missing facts in knowledge graphs using KGE models, and the evaluation shows that the simpler attacks are competitive with or outperform the computationally expensive ones. The thesis contributions not only highlight and provide an opportunity to fix the security vulnerabilities of KGE models, but also help to understand the black-box predictive behaviour of KGE models.
Convolutional neural networks (CNN) are the dominant deep neural network (DNN) architecture for computer vision. Recently, Transformer and multi-layer perceptron (MLP)-based models, such as Vision Transformer and MLP-Mixer, started to lead new trends as they showed promising results in the ImageNet classification task. In this paper, we conduct empirical studies on these DNN structures and try to understand their respective pros and cons. To ensure a fair comparison, we first develop a unified framework called SPACH which adopts separate modules for spatial and channel processing. Our experiments under the SPACH framework reveal that all structures can achieve competitive performance at a moderate scale. However, they demonstrate distinctive behaviors when the network size scales up. Based on our findings, we propose two hybrid models using convolution and Transformer modules. The resulting Hybrid-MS-S+ model achieves 83.9% top-1 accuracy with 63M parameters and 12.3G FLOPS. It is already on par with the SOTA models with sophisticated designs. The code and models will be made publicly available.
For better user experience and business effectiveness, Click-Through Rate (CTR) prediction has been one of the most important tasks in E-commerce. Although extensive CTR prediction models have been proposed, learning good representation of items from multimodal features is still less investigated, considering an item in E-commerce usually contains multiple heterogeneous modalities. Previous works either concatenate the multiple modality features, that is equivalent to giving a fixed importance weight to each modality; or learn dynamic weights of different modalities for different items through technique like attention mechanism. However, a problem is that there usually exists common redundant information across multiple modalities. The dynamic weights of different modalities computed by using the redundant information may not correctly reflect the different importance of each modality. To address this, we explore the complementarity and redundancy of modalities by considering modality-specific and modality-invariant features differently. We propose a novel Multimodal Adversarial Representation Network (MARN) for the CTR prediction task. A multimodal attention network first calculates the weights of multiple modalities for each item according to its modality-specific features. Then a multimodal adversarial network learns modality-invariant representations where a double-discriminators strategy is introduced. Finally, we achieve the multimodal item representations by combining both modality-specific and modality-invariant representations. We conduct extensive experiments on both public and industrial datasets, and the proposed method consistently achieves remarkable improvements to the state-of-the-art methods. Moreover, the approach has been deployed in an operational E-commerce system and online A/B testing further demonstrates the effectiveness.
Graph convolutional networks (GCNs) have been successfully applied in node classification tasks of network mining. However, most of these models based on neighborhood aggregation are usually shallow and lack the "graph pooling" mechanism, which prevents the model from obtaining adequate global information. In order to increase the receptive field, we propose a novel deep Hierarchical Graph Convolutional Network (H-GCN) for semi-supervised node classification. H-GCN first repeatedly aggregates structurally similar nodes to hyper-nodes and then refines the coarsened graph to the original to restore the representation for each node. Instead of merely aggregating one- or two-hop neighborhood information, the proposed coarsening procedure enlarges the receptive field for each node, hence more global information can be learned. Comprehensive experiments conducted on public datasets demonstrate the effectiveness of the proposed method over the state-of-art methods. Notably, our model gains substantial improvements when only a few labeled samples are provided.
Adversarial attacks to image classification systems present challenges to convolutional networks and opportunities for understanding them. This study suggests that adversarial perturbations on images lead to noise in the features constructed by these networks. Motivated by this observation, we develop new network architectures that increase adversarial robustness by performing feature denoising. Specifically, our networks contain blocks that denoise the features using non-local means or other filters; the entire networks are trained end-to-end. When combined with adversarial training, our feature denoising networks substantially improve the state-of-the-art in adversarial robustness in both white-box and black-box attack settings. On ImageNet, under 10-iteration PGD white-box attacks where prior art has 27.9% accuracy, our method achieves 55.7%; even under extreme 2000-iteration PGD white-box attacks, our method secures 42.6% accuracy. A network based on our method was ranked first in Competition on Adversarial Attacks and Defenses (CAAD) 2018 --- it achieved 50.6% classification accuracy on a secret, ImageNet-like test dataset against 48 unknown attackers, surpassing the runner-up approach by ~10%. Code and models will be made publicly available.