亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We consider a model for multivariate data with heavy-tailed marginal distributions and a Gaussian dependence structure. The different marginals in the model are allowed to have non-identical tail behavior in contrast to most popular modeling paradigms for multivariate heavy-tail analysis. Despite being a practical choice, results on parameter estimation and inference under such models remain limited. In this article, consistent estimates for both marginal tail indices and the Gaussian correlation parameters for such models are provided and asymptotic normality of these estimators are established. The efficacy of the estimation methods are exhibited using extensive simulations and then they are applied to real data sets from insurance claims, internet traffic, and, online networks.

相關內容

A methodology for high dimensional causal inference in a time series context is introduced. It is assumed that there is a monotonic transformation of the data such that the dynamics of the transformed variables are described by a Gaussian vector autoregressive process. This is tantamount to assume that the dynamics are captured by a Gaussian copula. No knowledge or estimation of the marginal distribution of the data is required. The procedure consistently identifies the parameters that describe the dynamics of the process and the conditional causal relations among the possibly high dimensional variables under sparsity conditions. The methodology allows us to identify such causal relations in the form of a directed acyclic graph. As illustrative applications we consider the impact of supply side oil shocks on the economy, and the causal relations between aggregated variables constructed from the limit order book on four stock constituents of the S&P500.

The aim of this paper is to describe a novel non-parametric noise reduction technique from the point of view of Bayesian inference that may automatically improve the signal-to-noise ratio of one- and two-dimensional data, such as e.g. astronomical images and spectra. The algorithm iteratively evaluates possible smoothed versions of the data, the smooth models, obtaining an estimation of the underlying signal that is statistically compatible with the noisy measurements. Iterations stop based on the evidence and the $\chi^2$ statistic of the last smooth model, and we compute the expected value of the signal as a weighted average of the whole set of smooth models. In this paper, we explain the mathematical formalism and numerical implementation of the algorithm, and we evaluate its performance in terms of the peak signal to noise ratio, the structural similarity index, and the time payload, using a battery of real astronomical observations. Our Fully Adaptive Bayesian Algorithm for Data Analysis (FABADA) yields results that, without any parameter tuning, are comparable to standard image processing algorithms whose parameters have been optimized based on the true signal to be recovered, something that is impossible in a real application. State-of-the-art non-parametric methods, such as BM3D, offer slightly better performance at high signal-to-noise ratio, while our algorithm is significantly more accurate for extremely noisy data (higher than $20-40\%$ relative errors, a situation of particular interest in the field of astronomy). In this range, the standard deviation of the residuals obtained by our reconstruction may become more than an order of magnitude lower than that of the original measurements. The source code needed to reproduce all the results presented in this report, including the implementation of the method, is publicly available at //github.com/PabloMSanAla/fabada

Recent breakthroughs in synthetic data generation approaches made it possible to produce highly photorealistic images which are hardly distinguishable from real ones. Furthermore, synthetic generation pipelines have the potential to generate an unlimited number of images. The combination of high photorealism and scale turn synthetic data into a promising candidate for improving various machine learning (ML) pipelines. Thus far, a large body of research in this field has focused on using synthetic images for training, by augmenting and enlarging training data. In contrast to using synthetic data for training, in this work we explore whether synthetic data can be beneficial for model selection. Considering the task of image classification, we demonstrate that when data is scarce, synthetic data can be used to replace the held out validation set, thus allowing to train on a larger dataset. We also introduce a novel method to calibrate the synthetic error estimation to fit that of the real domain. We show that such calibration significantly improves the usefulness of synthetic data for model selection.

Multi-task learning has emerged as a powerful machine learning paradigm for integrating data from multiple sources, leveraging similarities between tasks to improve overall model performance. However, the application of multi-task learning to real-world settings is hindered by data-sharing constraints, especially in healthcare settings. To address this challenge, we propose a flexible multi-task learning framework utilizing summary statistics from various sources. Additionally, we present an adaptive parameter selection approach based on a variant of Lepski's method, allowing for data-driven tuning parameter selection when only summary statistics are available. Our systematic non-asymptotic analysis characterizes the performance of the proposed methods under various regimes of the sample complexity and overlap. We demonstrate our theoretical findings and the performance of the method through extensive simulations. This work offers a more flexible tool for training related models across various domains, with practical implications in genetic risk prediction and many other fields.

Data reduction is a fundamental challenge of modern technology, where classical statistical methods are not applicable because of computational limitations. We consider linear regression for an extraordinarily large number of observations, but only a few covariates. Subsampling aims at the selection of a given percentage of the existing original data. Under distributional assumptions on the covariates, we derive D-optimal subsampling designs and study their theoretical properties. We make use of fundamental concepts of optimal design theory and an equivalence theorem from constrained convex optimization. The thus obtained subsampling designs provide simple rules for whether to accept or reject a data point, allowing for an easy algorithmic implementation. In addition, we propose a simplified subsampling method that differs from the D-optimal design but requires lower computing time. We present a simulation study, comparing both subsampling schemes with the IBOSS method.

Causal inference for extreme events has many potential applications in fields such as climate science, medicine and economics. We study the extremal quantile treatment effect of a binary treatment on a continuous, heavy-tailed outcome. Existing methods are limited to the case where the quantile of interest is within the range of the observations. For applications in risk assessment, however, the most relevant cases relate to extremal quantiles that go beyond the data range. We introduce an estimator of the extremal quantile treatment effect that relies on asymptotic tail approximation, and use a new causal Hill estimator for the extreme value indices of potential outcome distributions. We establish asymptotic normality of the estimators and propose a consistent variance estimator to achieve valid statistical inference. We illustrate the performance of our method in simulation studies, and apply it to a real data set to estimate the extremal quantile treatment effect of college education on wage.

Causal discovery and causal reasoning are classically treated as separate and consecutive tasks: one first infers the causal graph, and then uses it to estimate causal effects of interventions. However, such a two-stage approach is uneconomical, especially in terms of actively collected interventional data, since the causal query of interest may not require a fully-specified causal model. From a Bayesian perspective, it is also unnatural, since a causal query (e.g., the causal graph or some causal effect) can be viewed as a latent quantity subject to posterior inference -- other unobserved quantities that are not of direct interest (e.g., the full causal model) ought to be marginalized out in this process and contribute to our epistemic uncertainty. In this work, we propose Active Bayesian Causal Inference (ABCI), a fully-Bayesian active learning framework for integrated causal discovery and reasoning, which jointly infers a posterior over causal models and queries of interest. In our approach to ABCI, we focus on the class of causally-sufficient, nonlinear additive noise models, which we model using Gaussian processes. We sequentially design experiments that are maximally informative about our target causal query, collect the corresponding interventional data, and update our beliefs to choose the next experiment. Through simulations, we demonstrate that our approach is more data-efficient than several baselines that only focus on learning the full causal graph. This allows us to accurately learn downstream causal queries from fewer samples while providing well-calibrated uncertainty estimates for the quantities of interest.

The adaptive processing of structured data is a long-standing research topic in machine learning that investigates how to automatically learn a mapping from a structured input to outputs of various nature. Recently, there has been an increasing interest in the adaptive processing of graphs, which led to the development of different neural network-based methodologies. In this thesis, we take a different route and develop a Bayesian Deep Learning framework for graph learning. The dissertation begins with a review of the principles over which most of the methods in the field are built, followed by a study on graph classification reproducibility issues. We then proceed to bridge the basic ideas of deep learning for graphs with the Bayesian world, by building our deep architectures in an incremental fashion. This framework allows us to consider graphs with discrete and continuous edge features, producing unsupervised embeddings rich enough to reach the state of the art on several classification tasks. Our approach is also amenable to a Bayesian nonparametric extension that automatizes the choice of almost all model's hyper-parameters. Two real-world applications demonstrate the efficacy of deep learning for graphs. The first concerns the prediction of information-theoretic quantities for molecular simulations with supervised neural models. After that, we exploit our Bayesian models to solve a malware-classification task while being robust to intra-procedural code obfuscation techniques. We conclude the dissertation with an attempt to blend the best of the neural and Bayesian worlds together. The resulting hybrid model is able to predict multimodal distributions conditioned on input graphs, with the consequent ability to model stochasticity and uncertainty better than most works. Overall, we aim to provide a Bayesian perspective into the articulated research field of deep learning for graphs.

This paper focuses on the expected difference in borrower's repayment when there is a change in the lender's credit decisions. Classical estimators overlook the confounding effects and hence the estimation error can be magnificent. As such, we propose another approach to construct the estimators such that the error can be greatly reduced. The proposed estimators are shown to be unbiased, consistent, and robust through a combination of theoretical analysis and numerical testing. Moreover, we compare the power of estimating the causal quantities between the classical estimators and the proposed estimators. The comparison is tested across a wide range of models, including linear regression models, tree-based models, and neural network-based models, under different simulated datasets that exhibit different levels of causality, different degrees of nonlinearity, and different distributional properties. Most importantly, we apply our approaches to a large observational dataset provided by a global technology firm that operates in both the e-commerce and the lending business. We find that the relative reduction of estimation error is strikingly substantial if the causal effects are accounted for correctly.

Causal inference is a critical research topic across many domains, such as statistics, computer science, education, public policy and economics, for decades. Nowadays, estimating causal effect from observational data has become an appealing research direction owing to the large amount of available data and low budget requirement, compared with randomized controlled trials. Embraced with the rapidly developed machine learning area, various causal effect estimation methods for observational data have sprung up. In this survey, we provide a comprehensive review of causal inference methods under the potential outcome framework, one of the well known causal inference framework. The methods are divided into two categories depending on whether they require all three assumptions of the potential outcome framework or not. For each category, both the traditional statistical methods and the recent machine learning enhanced methods are discussed and compared. The plausible applications of these methods are also presented, including the applications in advertising, recommendation, medicine and so on. Moreover, the commonly used benchmark datasets as well as the open-source codes are also summarized, which facilitate researchers and practitioners to explore, evaluate and apply the causal inference methods.

北京阿比特科技有限公司