Large language models (LLMs) have demonstrated remarkable advancements and have attracted significant efforts to develop LLMs into agents capable of executing intricate multi-step decision-making tasks beyond traditional NLP applications. Existing approaches to LLM-based decision-making predominantly build upon the manually-designed external performance metrics to guide the decision-making process. However, reliance on the external performance metrics as prior is problematic in real-world scenarios, where such prior may be unavailable, flawed, or even erroneous. For genuine autonomous decision making, it is imperative for the agent to develop its rationality from its posterior experiences to judge decisions independently. Central to the development of rationality is the construction of an internalized utility judgment, capable of assigning numerical utilities to each decision. This paper proposes RadAgent (Rational Decision-Making Agent), which fosters the development of its rationality through an iterative framework involving Experience Exploration and Utility Learning. Within this framework, Elo-based Utility Construction is devised to assign Elo scores to individual decision steps to judge their utilities via pairwise comparisons. Consequently, these Elo scores guide the decision-making process to derive optimal outcomes. Experimental results on the ToolBench dataset demonstrate RadAgent's superiority over baselines, achieving over 10% improvement in Pass Rate on diverse tasks. It offers higher-quality solutions and reduces costs (ChatGPT API calls), highlighting its effectiveness and efficiency.
Video grounding aims to localize the corresponding video moment in an untrimmed video given a language query. Existing methods often address this task in an indirect way, by casting it as a proposal-and-match or fusion-and-detection problem. Solving these surrogate problems often requires sophisticated label assignment during training and hand-crafted removal of near-duplicate results. Meanwhile, existing works typically focus on sparse video grounding with a single sentence as input, which could result in ambiguous localization due to its unclear description. In this paper, we tackle a new problem of dense video grounding, by simultaneously localizing multiple moments with a paragraph as input. From a perspective on video grounding as language conditioned regression, we present an end-to-end parallel decoding paradigm by re-purposing a Transformer-alike architecture (PRVG). The key design in our PRVG is to use languages as queries, and directly regress the moment boundaries based on language-modulated visual representations. Thanks to its simplicity in design, our PRVG framework can be applied in different testing schemes (sparse or dense grounding) and allows for efficient inference without any post-processing technique. In addition, we devise a robust proposal-level attention loss to guide the training of PRVG, which is invariant to moment duration and contributes to model convergence. We perform experiments on two video grounding benchmarks of ActivityNet Captions and TACoS, demonstrating that our PRVG can significantly outperform previous methods. We also perform in-depth studies to investigate the effectiveness of parallel regression paradigm on video grounding.
Recent studies demonstrate that query expansions generated by large language models (LLMs) can considerably enhance information retrieval systems by generating hypothetical documents that answer the queries as expansions. However, challenges arise from misalignments between the expansions and the retrieval corpus, resulting in issues like hallucinations and outdated information due to the limited intrinsic knowledge of LLMs. Inspired by Pseudo Relevance Feedback (PRF), we introduce Corpus-Steered Query Expansion (CSQE) to promote the incorporation of knowledge embedded within the corpus. CSQE utilizes the relevance assessing capability of LLMs to systematically identify pivotal sentences in the initially-retrieved documents. These corpus-originated texts are subsequently used to expand the query together with LLM-knowledge empowered expansions, improving the relevance prediction between the query and the target documents. Extensive experiments reveal that CSQE exhibits strong performance without necessitating any training, especially with queries for which LLMs lack knowledge.
Partial label learning (PLL) learns from training examples each associated with multiple candidate labels, among which only one is valid. In recent years, benefiting from the strong capability of dealing with ambiguous supervision and the impetus of modern data augmentation methods, consistency regularization-based PLL methods have achieved a series of successes and become mainstream. However, as the partial annotation becomes insufficient, their performances drop significantly. In this paper, we leverage easily accessible unlabeled examples to facilitate the partial label consistency regularization. In addition to a partial supervised loss, our method performs a controller-guided consistency regularization at both the label-level and representation-level with the help of unlabeled data. To minimize the disadvantages of insufficient capabilities of the initial supervised model, we use the controller to estimate the confidence of each current prediction to guide the subsequent consistency regularization. Furthermore, we dynamically adjust the confidence thresholds so that the number of samples of each class participating in consistency regularization remains roughly equal to alleviate the problem of class-imbalance. Experiments show that our method achieves satisfactory performances in more practical situations, and its modules can be applied to existing PLL methods to enhance their capabilities.
With the rapid development of Large Language Models (LLMs), various explorations have arisen to utilize LLMs capability of context understanding on recommender systems. While pioneering strategies have primarily transformed traditional recommendation tasks into challenges of natural language generation, there has been a relative scarcity of exploration in the domain of session-based recommendation (SBR) due to its specificity. SBR has been primarily dominated by Graph Neural Networks, which have achieved many successful outcomes due to their ability to capture both the implicit and explicit relationships between adjacent behaviors. The structural nature of graphs contrasts with the essence of natural language, posing a significant adaptation gap for LLMs. In this paper, we introduce large language models with graphical Session-Based recommendation, named LLMGR, an effective framework that bridges the aforementioned gap by harmoniously integrating LLMs with Graph Neural Networks (GNNs) for SBR tasks. This integration seeks to leverage the complementary strengths of LLMs in natural language understanding and GNNs in relational data processing, leading to a more powerful session-based recommender system that can understand and recommend items within a session. Moreover, to endow the LLM with the capability to empower SBR tasks, we design a series of prompts for both auxiliary and major instruction tuning tasks. These prompts are crafted to assist the LLM in understanding graph-structured data and align textual information with nodes, effectively translating nuanced user interactions into a format that can be understood and utilized by LLM architectures. Extensive experiments on three real-world datasets demonstrate that LLMGR outperforms several competitive baselines, indicating its effectiveness in enhancing SBR tasks and its potential as a research direction for future exploration.
Large language models (LLMs) demonstrate remarkable multilingual capabilities without being pre-trained on specially curated multilingual parallel corpora. It remains a challenging problem to explain the underlying mechanisms by which LLMs process multilingual texts. In this paper, we delve into the composition of Transformer architectures in LLMs to pinpoint language-specific regions. Specially, we propose a novel detection method, language activation probability entropy (LAPE), to identify language-specific neurons within LLMs. Based on LAPE, we conduct comprehensive experiments on two representative LLMs, namely LLaMA-2 and BLOOM. Our findings indicate that LLMs' proficiency in processing a particular language is predominantly due to a small subset of neurons, primarily situated in the models' top and bottom layers. Furthermore, we showcase the feasibility to "steer" the output language of LLMs by selectively activating or deactivating language-specific neurons. Our research provides important evidence to the understanding and exploration of the multilingual capabilities of LLMs.
Pre-trained large language models (LLMs) have recently achieved better generalization and sample efficiency in autonomous web automation. However, the performance on real-world websites has still suffered from (1) open domainness, (2) limited context length, and (3) lack of inductive bias on HTML. We introduce WebAgent, an LLM-driven agent that learns from self-experience to complete tasks on real websites following natural language instructions. WebAgent plans ahead by decomposing instructions into canonical sub-instructions, summarizes long HTML documents into task-relevant snippets, and acts on websites via Python programs generated from those. We design WebAgent with Flan-U-PaLM, for grounded code generation, and HTML-T5, new pre-trained LLMs for long HTML documents using local and global attention mechanisms and a mixture of long-span denoising objectives, for planning and summarization. We empirically demonstrate that our modular recipe improves the success on real websites by over 50%, and that HTML-T5 is the best model to solve various HTML understanding tasks; achieving 18.7% higher success rate than the prior method on MiniWoB web automation benchmark, and SoTA performance on Mind2Web, an offline task planning evaluation.
Compressed prompts aid instruction-tuned language models (LMs) in overcoming context window limitations and reducing computational costs. Existing methods, which primarily based on training embeddings, face various challenges associated with interpretability, the fixed number of embedding tokens, reusability across different LMs, and inapplicability when interacting with black-box APIs. This study proposes prompt compression with reinforcement learning (PCRL), which is a discrete prompt compression method that addresses these issues. The proposed PCRL method utilizes a computationally efficient policy network that edits prompts directly. The training approach employed in the proposed PCRLs can be applied flexibly to various types of LMs, including both decoder-only and encoder-decoder architecture and it can be trained without gradient access to the LMs or labeled data. The proposed PCRL achieves an average reduction of 24.6\% in terms of the token count across various instruction prompts while maintaining sufficient performance. In addition, we demonstrate that the learned policy can be transferred to larger LMs, and through a comprehensive analysis, we explore the token importance within the prompts.
AI-powered programming assistants are increasingly gaining popularity, with GitHub Copilot alone used by over a million developers worldwide. These tools are far from perfect, however, producing code suggestions that may be incorrect in subtle ways. As a result, developers face a new challenge: validating AI's suggestions. This paper explores whether Live Programming (LP), a continuous display of a program's runtime values, can help address this challenge. To answer this question, we built a Python editor that combines an AI-powered programming assistant with an existing LP environment. Using this environment in a between-subjects study (N=17), we found that by lowering the cost of validation by execution, LP can mitigate over- and under-reliance on AI-generated programs and reduce the cognitive load of validation for certain types of tasks.
Since the launch of ChatGPT, a powerful AI Chatbot developed by OpenAI, large language models (LLMs) have made significant advancements in both academia and industry, bringing about a fundamental engineering paradigm shift in many areas. While LLMs are powerful, it is also crucial to best use their power where "prompt'' plays a core role. However, the booming LLMs themselves, including excellent APIs like ChatGPT, have several inherent limitations: 1) temporal lag of training data, and 2) the lack of physical capabilities to perform external actions. Recently, we have observed the trend of utilizing prompt-based tools to better utilize the power of LLMs for downstream tasks, but a lack of systematic literature and standardized terminology, partly due to the rapid evolution of this field. Therefore, in this work, we survey related prompting tools and promote the concept of the "Prompting Framework" (PF), i.e. the framework for managing, simplifying, and facilitating interaction with large language models. We define the lifecycle of the PF as a hierarchical structure, from bottom to top, namely: Data Level, Base Level, Execute Level, and Service Level. We also systematically depict the overall landscape of the emerging PF field and discuss potential future research and challenges. To continuously track the developments in this area, we maintain a repository at //github.com/lxx0628/Prompting-Framework-Survey, which can be a useful resource sharing platform for both academic and industry in this field.
We propose a novel single shot object detection network named Detection with Enriched Semantics (DES). Our motivation is to enrich the semantics of object detection features within a typical deep detector, by a semantic segmentation branch and a global activation module. The segmentation branch is supervised by weak segmentation ground-truth, i.e., no extra annotation is required. In conjunction with that, we employ a global activation module which learns relationship between channels and object classes in a self-supervised manner. Comprehensive experimental results on both PASCAL VOC and MS COCO detection datasets demonstrate the effectiveness of the proposed method. In particular, with a VGG16 based DES, we achieve an mAP of 81.7 on VOC2007 test and an mAP of 32.8 on COCO test-dev with an inference speed of 31.5 milliseconds per image on a Titan Xp GPU. With a lower resolution version, we achieve an mAP of 79.7 on VOC2007 with an inference speed of 13.0 milliseconds per image.