亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

The Restricted Additive Schwarz method with impedance transmission conditions, also known as the Optimised Restricted Additive Schwarz (ORAS) method, is a simple overlapping one-level parallel domain decomposition method, which has been successfully used as an iterative solver and as a preconditioner for discretized Helmholtz boundary-value problems. In this paper, we give, for the first time, a convergence analysis for ORAS as an iterative solver -- and also as a preconditioner -- for nodal finite element Helmholtz systems of any polynomial order. The analysis starts by showing (for general domain decompositions) that ORAS as an unconventional finite element approximation of a classical parallel iterative Schwarz method, formulated at the PDE (non-discrete) level. This non-discrete Schwarz method was recently analysed in [Gong, Gander, Graham, Lafontaine, Spence, arXiv 2106.05218], and the present paper gives a corresponding discrete version of this analysis. In particular, for domain decompositions in strips in 2-d, we show that, when the mesh size is small enough, ORAS inherits the convergence properties of the Schwarz method, independent of polynomial order. The proof relies on characterising the ORAS iteration in terms of discrete `impedance-to-impedance maps', which we prove (via a novel weighted finite-element error analysis) converge as $h\rightarrow 0$ in the operator norm to their non-discrete counterparts.

相關內容

The Stochastic Extragradient (SEG) method is one of the most popular algorithms for solving min-max optimization and variational inequalities problems (VIP) appearing in various machine learning tasks. However, several important questions regarding the convergence properties of SEG are still open, including the sampling of stochastic gradients, mini-batching, convergence guarantees for the monotone finite-sum variational inequalities with possibly non-monotone terms, and others. To address these questions, in this paper, we develop a novel theoretical framework that allows us to analyze several variants of SEG in a unified manner. Besides standard setups, like Same-Sample SEG under Lipschitzness and monotonicity or Independent-Samples SEG under uniformly bounded variance, our approach allows us to analyze variants of SEG that were never explicitly considered in the literature before. Notably, we analyze SEG with arbitrary sampling which includes importance sampling and various mini-batching strategies as special cases. Our rates for the new variants of SEG outperform the current state-of-the-art convergence guarantees and rely on less restrictive assumptions.

Often the easiest way to discretize an ordinary or partial differential equation is by a rectangular numerical method, in which n basis functions are sampled at m>>n collocation points. We show how eigenvalue problems can be solved in this setting by QR reduction to square matrix generalized eigenvalue problems. The method applies equally in the limit "m=infinity" of eigenvalue problems for quasimatrices. Numerical examples are presented as well as pointers to some related literature.

The modeling of dependence between maxima is an important subject in several applications in risk analysis. To this aim, the extreme value copula function, characterised via the madogram, can be used as a margin-free description of the dependence structure. From a practical point of view, the family of extreme value distributions is very rich and arise naturally as the limiting distribution of properly normalised component-wise maxima. In this paper, we investigate the nonparametric estimation of the madogram where data are completely missing at random. We provide the functional central limit theorem for the considered multivariate madrogram correctly normalized, towards a tight Gaussian process for which the covariance function depends on the probabilities of missing. Explicit formula for the asymptotic variance is also given. Our results are illustrated in a finite sample setting with a simulation study.

Training generative adversarial networks (GANs) is known to be difficult, especially for financial time series. This paper first analyzes the well-posedness problem in GANs minimax games and the convexity issue in GANs objective functions. It then proposes a stochastic control framework for hyper-parameters tuning in GANs training. The weak form of dynamic programming principle and the uniqueness and the existence of the value function in the viscosity sense for the corresponding minimax game are established. In particular, explicit forms for the optimal adaptive learning rate and batch size are derived and are shown to depend on the convexity of the objective function, revealing a relation between improper choices of learning rate and explosion in GANs training. Finally, empirical studies demonstrate that training algorithms incorporating this adaptive control approach outperform the standard ADAM method in terms of convergence and robustness. From GANs training perspective, the analysis in this paper provides analytical support for the popular practice of ``clipping'', and suggests that the convexity and well-posedness issues in GANs may be tackled through appropriate choices of hyper-parameters.

This paper discusses the estimation of the generalization gap, the difference between a generalization error and an empirical error, for overparameterized models (e.g., neural networks). We first show that a functional variance, a key concept in defining a widely-applicable information criterion, characterizes the generalization gap even in overparameterized settings where a conventional theory cannot be applied. We also propose a computationally efficient approximation of the function variance, the Langevin approximation of the functional variance (Langevin FV). This method leverages only the $1$st-order gradient of the squared loss function, without referencing the $2$nd-order gradient; this ensures that the computation is efficient and the implementation is consistent with gradient-based optimization algorithms. We demonstrate the Langevin FV numerically by estimating the generalization gaps of overparameterized linear regression and non-linear neural network models.

The Virtual Element Method (VEM) is a Galerkin approximation method that extends the Finite Element Method (FEM) to polytopal meshes. In this paper, we present a conforming formulation that generalizes the Scott-Vogelius finite element method for the numerical approximation of the Stokes problem to polygonal meshes in the framework of the virtual element method. In particular, we consider a straightforward application of the virtual element approximation space for scalar elliptic problems to the vector case and approximate the pressure variable through discontinuous polynomials. We assess the effectiveness of the numerical approximation by investigating the convergence on a manufactured solution problem and a set of representative polygonal meshes. We numerically show that this formulation is convergent with optimal convergence rates except for the lowest-order case on triangular meshes, where the method coincides with the $P_1-P_0$ Scott-Vogelius scheme, and on square meshes, which are situations that are well-known to be unstable.

Disentanglement is a useful property in representation learning which increases the interpretability of generative models such as Variational Auto-Encoders (VAE), Generative Adversarial Models, and their many variants. Typically in such models, an increase in disentanglement performance is traded-off with generation quality. In the context of latent space models, this work presents a representation learning framework that explicitly promotes disentanglement by encouraging orthogonal directions of variations. The proposed objective is the sum of an auto-encoder error term along with a Principal Component Analysis reconstruction error in the feature space. This has an interpretation of a Restricted Kernel Machine with the eigenvector matrix valued on the Stiefel manifold. Our analysis shows that such a construction promotes disentanglement by matching the principal directions in the latent space with the directions of orthogonal variation in data space. In an alternating minimization scheme, we use Cayley ADAM algorithm -- a stochastic optimization method on the Stiefel manifold along with the ADAM optimizer. Our theoretical discussion and various experiments show that the proposed model improves over many VAE variants in terms of both generation quality and disentangled representation learning.

This paper is dedicated to solving high-dimensional coupled FBSDEs with non-Lipschitz diffusion coefficients numerically. Under mild conditions, we provided a posterior estimate of the numerical solution that holds for any time duration. This posterior estimate validates the convergence of the recently proposed Deep BSDE method. In addition, we developed a numerical scheme based on the Deep BSDE method and presented numerical examples in financial markets to demonstrate the high performance.

In recent years, Bi-Level Optimization (BLO) techniques have received extensive attentions from both learning and vision communities. A variety of BLO models in complex and practical tasks are of non-convex follower structure in nature (a.k.a., without Lower-Level Convexity, LLC for short). However, this challenging class of BLOs is lack of developments on both efficient solution strategies and solid theoretical guarantees. In this work, we propose a new algorithmic framework, named Initialization Auxiliary and Pessimistic Trajectory Truncated Gradient Method (IAPTT-GM), to partially address the above issues. In particular, by introducing an auxiliary as initialization to guide the optimization dynamics and designing a pessimistic trajectory truncation operation, we construct a reliable approximate version of the original BLO in the absence of LLC hypothesis. Our theoretical investigations establish the convergence of solutions returned by IAPTT-GM towards those of the original BLO without LLC. As an additional bonus, we also theoretically justify the quality of our IAPTT-GM embedded with Nesterov's accelerated dynamics under LLC. The experimental results confirm both the convergence of our algorithm without LLC, and the theoretical findings under LLC.

In this work, we consider the distributed optimization of non-smooth convex functions using a network of computing units. We investigate this problem under two regularity assumptions: (1) the Lipschitz continuity of the global objective function, and (2) the Lipschitz continuity of local individual functions. Under the local regularity assumption, we provide the first optimal first-order decentralized algorithm called multi-step primal-dual (MSPD) and its corresponding optimal convergence rate. A notable aspect of this result is that, for non-smooth functions, while the dominant term of the error is in $O(1/\sqrt{t})$, the structure of the communication network only impacts a second-order term in $O(1/t)$, where $t$ is time. In other words, the error due to limits in communication resources decreases at a fast rate even in the case of non-strongly-convex objective functions. Under the global regularity assumption, we provide a simple yet efficient algorithm called distributed randomized smoothing (DRS) based on a local smoothing of the objective function, and show that DRS is within a $d^{1/4}$ multiplicative factor of the optimal convergence rate, where $d$ is the underlying dimension.

北京阿比特科技有限公司