亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Medical image semantic segmentation techniques can help identify tumors automatically from computed tomography (CT) scans. In this paper, we propose a Contextual and Attentional feature Fusions enhanced Convolutional Neural Network (CNN) and Transformer hybrid network (CAFCT) model for liver tumor segmentation. In the proposed model, three other modules are introduced in the network architecture: Attentional Feature Fusion (AFF), Atrous Spatial Pyramid Pooling (ASPP) of DeepLabv3, and Attention Gates (AGs) to improve contextual information related to tumor boundaries for accurate segmentation. Experimental results show that the proposed CAFCT achieves a mean Intersection over Union (IoU) of 90.38% and Dice score of 86.78%, respectively, on the Liver Tumor Segmentation Benchmark (LiTS) dataset, outperforming pure CNN or Transformer methods, e.g., Attention U-Net, and PVTFormer.

相關內容

Federated Learning (FL) revolutionizes collaborative machine learning among Internet of Things (IoT) devices by enabling them to train models collectively while preserving data privacy. FL algorithms fall into two primary categories: synchronous and asynchronous. While synchronous FL efficiently handles straggler devices, it can compromise convergence speed and model accuracy. In contrast, asynchronous FL allows all devices to participate but incurs high communication overhead and potential model staleness. To overcome these limitations, the semi-synchronous FL framework introduces client tiering based on computing and communication latencies. Clients in different tiers upload their local models at distinct frequencies, striking a balance between straggler mitigation and communication costs. Enter the DecantFed algorithm (Dynamic client clustering, bandwidth allocation, and local training for semi-synchronous Federated learning), a dynamic solution that optimizes client clustering, bandwidth allocation, and local training workloads to maximize data sample processing rates. Additionally, DecantFed adapts client learning rates according to their tiers, addressing the model staleness problem. The algorithm's performance shines in extensive simulations using benchmark datasets, including MNIST and CIFAR-10, under independent and identically distributed (IID) and non-IID scenarios. DecantFed outpaces FedAvg and FedProx in terms of convergence speed and delivers a remarkable minimum 28% boost in model accuracy compared to FedProx.

High Dynamic Range (HDR) imaging aims to generate an artifact-free HDR image with realistic details by fusing multi-exposure Low Dynamic Range (LDR) images. Caused by large motion and severe under-/over-exposure among input LDR images, HDR imaging suffers from ghosting artifacts and fusion distortions. To address these critical issues, we propose an HDR Transformer Deformation Convolution (HDRTransDC) network to generate high-quality HDR images, which consists of the Transformer Deformable Convolution Alignment Module (TDCAM) and the Dynamic Weight Fusion Block (DWFB). To solve the ghosting artifacts, the proposed TDCAM extracts long-distance content similar to the reference feature in the entire non-reference features, which can accurately remove misalignment and fill the content occluded by moving objects. For the purpose of eliminating fusion distortions, we propose DWFB to spatially adaptively select useful information across frames to effectively fuse multi-exposed features. Extensive experiments show that our method quantitatively and qualitatively achieves state-of-the-art performance.

The techniques used to generate pseudo-random numbers for Monte Carlo (MC) applications bear many implications on the quality and speed of that programs work. As a random number generator (RNG) slows, the production of random numbers begins to dominate runtime. As RNG output grows in correlation, the final product becomes less reliable. These difficulties are further compounded by the need for reproducibility and parallelism. For reproducibility, the numbers generated to determine any outcome must be the same each time a simulation is run. However, the concurrency that comes with most parallelism introduces race conditions. To have both reproducibility and concurrency, separate RNG states must be tracked for each independently schedulable unit of simulation, forming independent random number streams. We propose an alternative to the stride-based parallel LCG seeding approach that scales more practically with increased concurrency and workload by generating seeds through hashing and allowing for repeated outputs. Data gathered from normality tests of tally results from simple MC transport benchmark calculations indicates that the proposed hash-based RNG does not significantly affect the tally result normality property as compared to the conventional stride-based RNG.

We propose the first Large Reconstruction Model (LRM) that predicts the 3D model of an object from a single input image within just 5 seconds. In contrast to many previous methods that are trained on small-scale datasets such as ShapeNet in a category-specific fashion, LRM adopts a highly scalable transformer-based architecture with 500 million learnable parameters to directly predict a neural radiance field (NeRF) from the input image. We train our model in an end-to-end manner on massive multi-view data containing around 1 million objects, including both synthetic renderings from Objaverse and real captures from MVImgNet. This combination of a high-capacity model and large-scale training data empowers our model to be highly generalizable and produce high-quality 3D reconstructions from various testing inputs, including real-world in-the-wild captures and images created by generative models. Video demos and interactable 3D meshes can be found on our LRM project webpage: //yiconghong.me/LRM.

Contextualized embeddings are the preferred tool for modeling Lexical Semantic Change (LSC). Current evaluations typically focus on a specific task known as Graded Change Detection (GCD). However, performance comparison across work are often misleading due to their reliance on diverse settings. In this paper, we evaluate state-of-the-art models and approaches for GCD under equal conditions. We further break the LSC problem into Word-in-Context (WiC) and Word Sense Induction (WSI) tasks, and compare models across these different levels. Our evaluation is performed across different languages on eight available benchmarks for LSC, and shows that (i) APD outperforms other approaches for GCD; (ii) XL-LEXEME outperforms other contextualized models for WiC, WSI, and GCD, while being comparable to GPT-4; (iii) there is a clear need for improving the modeling of word meanings, as well as focus on how, when, and why these meanings change, rather than solely focusing on the extent of semantic change.

We present DiffChat, a novel method to align Large Language Models (LLMs) to "chat" with prompt-as-input Text-to-Image Synthesis (TIS) models (e.g., Stable Diffusion) for interactive image creation. Given a raw prompt/image and a user-specified instruction, DiffChat can effectively make appropriate modifications and generate the target prompt, which can be leveraged to create the target image of high quality. To achieve this, we first collect an instruction-following prompt engineering dataset named InstructPE for the supervised training of DiffChat. Next, we propose a reinforcement learning framework with the feedback of three core criteria for image creation, i.e., aesthetics, user preference, and content integrity. It involves an action-space dynamic modification technique to obtain more relevant positive samples and harder negative samples during the off-policy sampling. Content integrity is also introduced into the value estimation function for further improvement of produced images. Our method can exhibit superior performance than baseline models and strong competitors based on both automatic and human evaluations, which fully demonstrates its effectiveness.

Graphic designers often get inspiration through the recombination of references. Our formative study (N=6) reveals that graphic designers focus on conceptual keywords during this process, and want support for discovering the keywords, expanding them, and exploring diverse recombination options of them, while still having room for designers' creativity. We propose CreativeConnect, a system with generative AI pipelines that helps users discover useful elements from the reference image using keywords, recommends relevant keywords, generates diverse recombination options with user-selected keywords, and shows recombinations as sketches with text descriptions. Our user study (N=16) showed that CreativeConnect helped users discover keywords from the reference and generate multiple ideas based on them, ultimately helping users produce more design ideas with higher self-reported creativity compared to the baseline system without generative pipelines. While CreativeConnect was shown effective in ideation, we discussed how CreativeConnect can be extended to support other types of tasks in creativity support.

Existing knowledge graph (KG) embedding models have primarily focused on static KGs. However, real-world KGs do not remain static, but rather evolve and grow in tandem with the development of KG applications. Consequently, new facts and previously unseen entities and relations continually emerge, necessitating an embedding model that can quickly learn and transfer new knowledge through growth. Motivated by this, we delve into an expanding field of KG embedding in this paper, i.e., lifelong KG embedding. We consider knowledge transfer and retention of the learning on growing snapshots of a KG without having to learn embeddings from scratch. The proposed model includes a masked KG autoencoder for embedding learning and update, with an embedding transfer strategy to inject the learned knowledge into the new entity and relation embeddings, and an embedding regularization method to avoid catastrophic forgetting. To investigate the impacts of different aspects of KG growth, we construct four datasets to evaluate the performance of lifelong KG embedding. Experimental results show that the proposed model outperforms the state-of-the-art inductive and lifelong embedding baselines.

Answering questions that require reading texts in an image is challenging for current models. One key difficulty of this task is that rare, polysemous, and ambiguous words frequently appear in images, e.g., names of places, products, and sports teams. To overcome this difficulty, only resorting to pre-trained word embedding models is far from enough. A desired model should utilize the rich information in multiple modalities of the image to help understand the meaning of scene texts, e.g., the prominent text on a bottle is most likely to be the brand. Following this idea, we propose a novel VQA approach, Multi-Modal Graph Neural Network (MM-GNN). It first represents an image as a graph consisting of three sub-graphs, depicting visual, semantic, and numeric modalities respectively. Then, we introduce three aggregators which guide the message passing from one graph to another to utilize the contexts in various modalities, so as to refine the features of nodes. The updated nodes have better features for the downstream question answering module. Experimental evaluations show that our MM-GNN represents the scene texts better and obviously facilitates the performances on two VQA tasks that require reading scene texts.

Deep neural networks (DNNs) are successful in many computer vision tasks. However, the most accurate DNNs require millions of parameters and operations, making them energy, computation and memory intensive. This impedes the deployment of large DNNs in low-power devices with limited compute resources. Recent research improves DNN models by reducing the memory requirement, energy consumption, and number of operations without significantly decreasing the accuracy. This paper surveys the progress of low-power deep learning and computer vision, specifically in regards to inference, and discusses the methods for compacting and accelerating DNN models. The techniques can be divided into four major categories: (1) parameter quantization and pruning, (2) compressed convolutional filters and matrix factorization, (3) network architecture search, and (4) knowledge distillation. We analyze the accuracy, advantages, disadvantages, and potential solutions to the problems with the techniques in each category. We also discuss new evaluation metrics as a guideline for future research.

北京阿比特科技有限公司