This paper focuses on the sim-to-real issue of RGB-D grasp detection and formulates it as a domain adaptation problem. In this case, we present a global-to-local method to address hybrid domain gaps in RGB and depth data and insufficient multi-modal feature alignment. First, a self-supervised rotation pre-training strategy is adopted to deliver robust initialization for RGB and depth networks. We then propose a global-to-local alignment pipeline with individual global domain classifiers for scene features of RGB and depth images as well as a local one specifically working for grasp features in the two modalities. In particular, we propose a grasp prototype adaptation module, which aims to facilitate fine-grained local feature alignment by dynamically updating and matching the grasp prototypes from the simulation and real-world scenarios throughout the training process. Due to such designs, the proposed method substantially reduces the domain shift and thus leads to consistent performance improvements. Extensive experiments are conducted on the GraspNet-Planar benchmark and physical environment, and superior results are achieved which demonstrate the effectiveness of our method.
To realize a global quantum Internet, there is a need for communication between quantum subnetworks. To accomplish this task, there have been multiple design proposals for a quantum backbone network and quantum subnetworks. In this work, we elaborate on the design that uses entanglement and quantum teleportation to build the quantum backbone between packetized quantum networks. We design a network interface to interconnect packetized quantum networks with entanglement-based quantum backbone networks and, moreover, design a scheme to accomplish data transmission over this hybrid quantum network model. We analyze the use of various implementations of the backbone network, focusing our study on backbone networks that use satellite links to continuously distribute entanglement resources. For feasibility, we analyze various system parameters via simulation to benchmark the performance of the overall network.
This paper focuses on the feasibility of Deep Neural Operator (DeepONet) as a robust surrogate modeling method within the context of digital twin (DT) for nuclear energy systems. Through benchmarking and evaluation, this study showcases the generalizability and computational efficiency of DeepONet in solving a challenging particle transport problem. DeepONet also exhibits remarkable prediction accuracy and speed, outperforming traditional ML methods, making it a suitable algorithm for real-time DT inference. However, the application of DeepONet also reveals challenges related to optimal sensor placement and model evaluation, critical aspects of real-world implementation. Addressing these challenges will further enhance the method's practicality and reliability. Overall, DeepONet presents a promising and transformative nuclear engineering research and applications tool. Its accurate prediction and computational efficiency capabilities can revolutionize DT systems, advancing nuclear engineering research. This study marks an important step towards harnessing the power of surrogate modeling techniques in critical engineering domains.
As autonomous driving technology progresses, the need for precise trajectory prediction models becomes paramount. This paper introduces an innovative model that infuses cognitive insights into trajectory prediction, focusing on perceived safety and dynamic decision-making. Distinct from traditional approaches, our model excels in analyzing interactions and behavior patterns in mixed autonomy traffic scenarios. It represents a significant leap forward, achieving marked performance improvements on several key datasets. Specifically, it surpasses existing benchmarks with gains of 16.2% on the Next Generation Simulation (NGSIM), 27.4% on the Highway Drone (HighD), and 19.8% on the Macao Connected Autonomous Driving (MoCAD) dataset. Our proposed model shows exceptional proficiency in handling corner cases, essential for real-world applications. Moreover, its robustness is evident in scenarios with missing or limited data, outperforming most of the state-of-the-art baselines. This adaptability and resilience position our model as a viable tool for real-world autonomous driving systems, heralding a new standard in vehicle trajectory prediction for enhanced safety and efficiency.
This paper introduces an innovative application of Large Event Models (LEMs), akin to Large Language Models, to the domain of soccer analytics. By learning the language of soccer - predicting variables for subsequent events rather than words - LEMs facilitate the simulation of matches and offer various applications, including player performance prediction across different team contexts. We focus on fine-tuning LEMs with the WyScout dataset for the 2017-2018 Premier League season to derive specific insights into player contributions and team strategies. Our methodology involves adapting these models to reflect the nuanced dynamics of soccer, enabling the evaluation of hypothetical transfers. Our findings confirm the effectiveness and limitations of LEMs in soccer analytics, highlighting the model's capability to forecast teams' expected standings and explore high-profile scenarios, such as the potential effects of transferring Cristiano Ronaldo or Lionel Messi to different teams in the Premier League. This analysis underscores the importance of context in evaluating player quality. While general metrics may suggest significant differences between players, contextual analyses reveal narrower gaps in performance within specific team frameworks.
This paper focuses on the Bregman divergence defined by the reciprocal function, called the inverse divergence. For the loss function defined by the monotonically increasing function $f$ and inverse divergence, the conditions for the statistical model and function $f$ under which the estimating equation is unbiased are clarified. Specifically, we characterize two types of statistical models, an inverse Gaussian type and a mixture of generalized inverse Gaussian type distributions, to show that the conditions for the function $f$ are different for each model. We also define Bregman divergence as a linear sum over the dimensions of the inverse divergence and extend the results to the multi-dimensional case.
We propose GaussianTalker, a novel framework for real-time generation of pose-controllable talking heads. It leverages the fast rendering capabilities of 3D Gaussian Splatting (3DGS) while addressing the challenges of directly controlling 3DGS with speech audio. GaussianTalker constructs a canonical 3DGS representation of the head and deforms it in sync with the audio. A key insight is to encode the 3D Gaussian attributes into a shared implicit feature representation, where it is merged with audio features to manipulate each Gaussian attribute. This design exploits the spatial-aware features and enforces interactions between neighboring points. The feature embeddings are then fed to a spatial-audio attention module, which predicts frame-wise offsets for the attributes of each Gaussian. It is more stable than previous concatenation or multiplication approaches for manipulating the numerous Gaussians and their intricate parameters. Experimental results showcase GaussianTalker's superiority in facial fidelity, lip synchronization accuracy, and rendering speed compared to previous methods. Specifically, GaussianTalker achieves a remarkable rendering speed up to 120 FPS, surpassing previous benchmarks. Our code is made available at //github.com/KU-CVLAB/GaussianTalker/ .
This paper focuses on mitigating DRAM Rowhammer attacks. In recent years, solutions like TRR have been deployed in DDR4 DRAM to track aggressor rows and then issue a mitigative action by refreshing neighboring victim rows. Unfortunately, such in-DRAM solutions are resource-constrained (only able to provision few tens of counters to track aggressor rows) and are prone to thrashing based attacks, that have been used to fool them. Secure alternatives for in-DRAM trackers require tens of thousands of counters. In this work, we demonstrate secure and scalable rowhammer mitigation using resource-constrained trackers. Our key idea is to manage such trackers with probabilistic management policies (PROTEAS). PROTEAS includes component policies like request-stream sampling and random evictions which enable thrash-resistance for resource-constrained trackers. We show that PROTEAS can secure small in-DRAM trackers (with 16 counters per DRAM bank) even when Rowhammer thresholds drop to 500 while incurring less than 3% slowdown. Moreover, we show that PROTEAS significantly outperforms a recent similar probabilistic proposal from Samsung (called DSAC) while achieving 11X - 19X the resilience against Rowhammer.
In this paper, we proposed to apply meta learning approach for low-resource automatic speech recognition (ASR). We formulated ASR for different languages as different tasks, and meta-learned the initialization parameters from many pretraining languages to achieve fast adaptation on unseen target language, via recently proposed model-agnostic meta learning algorithm (MAML). We evaluated the proposed approach using six languages as pretraining tasks and four languages as target tasks. Preliminary results showed that the proposed method, MetaASR, significantly outperforms the state-of-the-art multitask pretraining approach on all target languages with different combinations of pretraining languages. In addition, since MAML's model-agnostic property, this paper also opens new research direction of applying meta learning to more speech-related applications.
Event detection (ED), a sub-task of event extraction, involves identifying triggers and categorizing event mentions. Existing methods primarily rely upon supervised learning and require large-scale labeled event datasets which are unfortunately not readily available in many real-life applications. In this paper, we consider and reformulate the ED task with limited labeled data as a Few-Shot Learning problem. We propose a Dynamic-Memory-Based Prototypical Network (DMB-PN), which exploits Dynamic Memory Network (DMN) to not only learn better prototypes for event types, but also produce more robust sentence encodings for event mentions. Differing from vanilla prototypical networks simply computing event prototypes by averaging, which only consume event mentions once, our model is more robust and is capable of distilling contextual information from event mentions for multiple times due to the multi-hop mechanism of DMNs. The experiments show that DMB-PN not only deals with sample scarcity better than a series of baseline models but also performs more robustly when the variety of event types is relatively large and the instance quantity is extremely small.
Dense video captioning aims to generate text descriptions for all events in an untrimmed video. This involves both detecting and describing events. Therefore, all previous methods on dense video captioning tackle this problem by building two models, i.e. an event proposal and a captioning model, for these two sub-problems. The models are either trained separately or in alternation. This prevents direct influence of the language description to the event proposal, which is important for generating accurate descriptions. To address this problem, we propose an end-to-end transformer model for dense video captioning. The encoder encodes the video into appropriate representations. The proposal decoder decodes from the encoding with different anchors to form video event proposals. The captioning decoder employs a masking network to restrict its attention to the proposal event over the encoding feature. This masking network converts the event proposal to a differentiable mask, which ensures the consistency between the proposal and captioning during training. In addition, our model employs a self-attention mechanism, which enables the use of efficient non-recurrent structure during encoding and leads to performance improvements. We demonstrate the effectiveness of this end-to-end model on ActivityNet Captions and YouCookII datasets, where we achieved 10.12 and 6.58 METEOR score, respectively.