We expound on some known lower bounds of the quadratic Wasserstein distance between random vectors in $\mathbb{R}^n$ with an emphasis on affine transformations that have been used in manifold learning of data in Wasserstein space. In particular, we give concrete lower bounds for rotated copies of random vectors in $\mathbb{R}^2$ with uncorrelated components by computing the Bures metric between the covariance matrices. We also derive upper bounds for compositions of affine maps which yield a fruitful variety of diffeomorphisms applied to an initial data measure. We apply these bounds to various distributions including those lying on a 1-dimensional manifold in $\mathbb{R}^2$ and illustrate the quality of the bounds. Finally, we give a framework for mimicking handwritten digit or alphabet datasets that can be applied in a manifold learning framework.
For $d \ge 2$, let $X$ be a random vector having a Bingham distribution on $\mathcal{S}^{d-1}$, the unit sphere centered at the origin in $\R^d$, and let $\Sigma$ denote the symmetric matrix parameter of the distribution. Let $\Psi(\Sigma)$ be the normalizing constant of the distribution and let $\nabla \Psi_d(\Sigma)$ be the matrix of first-order partial derivatives of $\Psi(\Sigma)$ with respect to the entries of $\Sigma$. We derive complete asymptotic expansions for $\Psi(\Sigma)$ and $\nabla \Psi_d(\Sigma)$, as $d \to \infty$; these expansions are obtained subject to the growth condition that $\|\Sigma\|$, the Frobenius norm of $\Sigma$, satisfies $\|\Sigma\| \le \gamma_0 d^{r/2}$ for all $d$, where $\gamma_0 > 0$ and $r \in [0,1)$. Consequently, we obtain for the covariance matrix of $X$ an asymptotic expansion up to terms of arbitrary degree in $\Sigma$. Using a range of values of $d$ that have appeared in a variety of applications of high-dimensional spherical data analysis we tabulate the bounds on the remainder terms in the expansions of $\Psi(\Sigma)$ and $\nabla \Psi_d(\Sigma)$ and we demonstrate the rapid convergence of the bounds to zero as $r$ decreases.
Prompted by an observation about the integral of exponential functions of the form $f(x)=\lambda\mathrm{e}^{\alpha x}$, we investigate the possibility to exactly integrate families of functions generated from a given function by scaling or by affine transformations of the argument using nonlinear generalizations of quadrature formulae. The main result of this paper is that such formulae can be explicitly constructed for a wide class of functions, and have the same accuracy as Newton-Cotes formulae based on the same nodes. We also show how Newton-Cotes formulae emerge as the linear case of our general formalism, and demonstrate the usefulness of the nonlinear formulae in the context of the Pad\'e-Laplace method of exponential analysis.
Given an edge-weighted (metric/general) complete graph with $n$ vertices, the maximum weight (metric/general) $k$-cycle/path packing problem is to find a set of $\frac{n}{k}$ vertex-disjoint $k$-cycles/paths such that the total weight is maximized. In this paper, we consider approximation algorithms. For metric $k$-cycle packing, we improve the previous approximation ratio from $3/5$ to $7/10$ for $k=5$, and from $7/8\cdot(1-1/k)^2$ for $k>5$ to $(7/8-0.125/k)(1-1/k)$ for constant odd $k>5$ and to $7/8\cdot (1-1/k+\frac{1}{k(k-1)})$ for even $k>5$. For metric $k$-path packing, we improve the approximation ratio from $7/8\cdot (1-1/k)$ to $\frac{27k^2-48k+16}{32k^2-36k-24}$ for even $10\geq k\geq 6$. For the case of $k=4$, we improve the approximation ratio from $3/4$ to $5/6$ for metric 4-cycle packing, from $2/3$ to $3/4$ for general 4-cycle packing, and from $3/4$ to $14/17$ for metric 4-path packing.
The Constraint Satisfaction Problem (CSP) is a problem of computing a homomorphism $\mathbf{R}\to \mathbf{\Gamma}$ between two relational structures, where $\mathbf{R}$ is defined over a domain $V$ and $\mathbf{\Gamma}$ is defined over a domain $D$. In a fixed template CSP, denoted $\rm{CSP}(\mathbf{\Gamma})$, the right side structure $\mathbf{\Gamma}$ is fixed and the left side structure $\mathbf{R}$ is unconstrained. In the last two decades it was discovered that the reasons that make fixed template CSPs polynomially solvable are of algebraic nature, namely, templates that are tractable should be preserved under certain polymorphisms. From this perspective the following problem looks natural: given a prespecified finite set of algebras ${\mathcal B}$ whose domain is $D$, is it possible to present the solution set of a given instance of $\rm{CSP}(\mathbf{\Gamma})$ as a subalgebra of ${\mathbb A}_1\times ... \times {\mathbb A}_{|V|}$ where ${\mathbb A}_i\in {\mathcal B}$? We study this problem and show that it can be reformulated as an instance of a certain fixed-template CSP over another template $\mathbf{\Gamma}^{\mathcal B}$. We study conditions under which $\rm{CSP}(\mathbf{\Gamma})$ can be reduced to $\rm{CSP}(\mathbf{\Gamma}^{\mathcal B})$. This issue is connected with the so-called CSP with an input prototype, formulated in the following way: given a homomorphism from $\mathbf{R}$ to $\mathbf{\Gamma}^{\mathcal B}$ find a homomorphism from $\mathbf{R}$ to $\mathbf{\Gamma}$. We prove that if ${\mathcal B}$ contains only tractable algebras, then the latter CSP with an input prototype is tractable. We also prove that $\rm{CSP}(\mathbf{\Gamma}^{\mathcal B})$ can be reduced to $\rm{CSP}(\mathbf{\Gamma})$ if the set ${\mathcal B}$, treated as a relation over $D$, can be expressed as a primitive positive formula over $\mathbf{\Gamma}$.
For an odd prime $p$, we say $f(X) \in {\mathbb F}_p[X]$ computes square roots in $\mathbb F_p$ if, for all nonzero perfect squares $a \in \mathbb F_p$, we have $f(a)^2 = a$. When $p \equiv 3 \mod 4$, it is well known that $f(X) = X^{(p+1)/4}$ computes square roots. This degree is surprisingly low (and in fact lowest possible), since we have specified $(p-1)/2$ evaluations (up to sign) of the polynomial $f(X)$. On the other hand, for $p \equiv 1 \mod 4$ there was previously no nontrivial bound known on the lowest degree of a polynomial computing square roots in $\mathbb F_p$; it could have been anywhere between $\frac{p}{4}$ and $\frac{p}{2}$. We show that for all $p \equiv 1 \mod 4$, the degree of a polynomial computing square roots has degree at least $p/3$. Our main new ingredient is a general lemma which may be of independent interest: powers of a low degree polynomial cannot have too many consecutive zero coefficients. The proof method also yields a robust version: any polynomial that computes square roots for 99\% of the squares also has degree almost $p/3$. In the other direction, we also show that for infinitely many $p \equiv 1 \mod 4$, the degree of a polynomial computing square roots can be $(\frac{1}{2} - \Omega(1))p$.
Lawvere showed that generalised metric spaces are categories enriched over $[0, \infty]$, the quantale of the positive extended reals. The statement of enrichment is a quantitative analogue of being a preorder. Towards seeking a logic for quantitative metric reasoning, we investigate three $[0,\infty]$-valued propositional logics over the Lawvere quantale. The basic logical connectives shared by all three logics are those that can be interpreted in any quantale, viz finite conjunctions and disjunctions, tensor (addition for the Lawvere quantale) and linear implication (here a truncated subtraction); to these we add, in turn, the constant $1$ to express integer values, and scalar multiplication by a non-negative real to express general affine combinations. Quantitative equational logic can be interpreted in the third logic if we allow inference systems instead of axiomatic systems. For each of these logics we develop a natural deduction system which we prove to be decidably complete w.r.t. the quantale-valued semantics. The heart of the completeness proof makes use of the Motzkin transposition theorem. Consistency is also decidable; the proof makes use of Fourier-Motzkin elimination of linear inequalities. Strong completeness does not hold in general, even (as is known) for theories over finitely-many propositional variables; indeed even an approximate form of strong completeness in the sense of Pavelka or Ben Yaacov -- provability up to arbitrary precision -- does not hold. However, we can show it for theories axiomatized by a (not necessarily finite) set of judgements in normal form over a finite set of propositional variables when we restrict to models that do not map variables to $\infty$; the proof uses Hurwicz's general form of the Farkas' Lemma.
The circuit class $\mathsf{QAC}^0$ was introduced by Moore (1999) as a model for constant depth quantum circuits where the gate set includes many-qubit Toffoli gates. Proving lower bounds against such circuits is a longstanding challenge in quantum circuit complexity; in particular, showing that polynomial-size $\mathsf{QAC}^0$ cannot compute the parity function has remained an open question for over 20 years. In this work, we identify a notion of the Pauli spectrum of $\mathsf{QAC}^0$ circuits, which can be viewed as the quantum analogue of the Fourier spectrum of classical $\mathsf{AC}^0$ circuits. We conjecture that the Pauli spectrum of $\mathsf{QAC}^0$ circuits satisfies low-degree concentration, in analogy to the famous Linial, Nisan, Mansour theorem on the low-degree Fourier concentration of $\mathsf{AC}^0$ circuits. If true, this conjecture immediately implies that polynomial-size $\mathsf{QAC}^0$ circuits cannot compute parity. We prove this conjecture for the class of depth-$d$, polynomial-size $\mathsf{QAC}^0$ circuits with at most $n^{O(1/d)}$ auxiliary qubits. We obtain new circuit lower bounds and learning results as applications: this class of circuits cannot correctly compute - the $n$-bit parity function on more than $(\frac{1}{2} + 2^{-\Omega(n^{1/d})})$-fraction of inputs, and - the $n$-bit majority function on more than $(1 - 1/\mathrm{poly}(n))$-fraction of inputs. Additionally we show that this class of $\mathsf{QAC}^0$ circuits with limited auxiliary qubits can be learned with quasipolynomial sample complexity, giving the first learning result for $\mathsf{QAC}^0$ circuits. More broadly, our results add evidence that "Pauli-analytic" techniques can be a powerful tool in studying quantum circuits.
We offer an alternative proof, using the Stein-Chen method, of Bollob\'{a}s' theorem concerning the distribution of the extreme degrees of a random graph. Our proof also provides a rate of convergence of the extreme degree to its asymptotic distribution. The same method also applies in a more general setting where the probability of every pair of vertices being connected by edges depends on the number of vertices.
For a function $F: X \to Y$ between real Banach spaces, we show how continuation methods to solve $F(u) = g$ may improve from basic understanding of the critical set $C$ of $F$. The algorithm aims at special points with a large number of preimages, which in turn may be used as initial conditions for standard continuation methods applied to the solution of the desired equation. A geometric model based on the sets $C$ and $F^{-1}(F(C))$ substantiate our choice of curves $c \in X$ with abundant intersections with $C$. We consider three classes of examples. First we handle functions $F: R^2 \to R^2$, for which the reasoning behind the techniques is visualizable. The second set of examples, between spaces of dimension 15, is obtained by discretizing a nonlinear Sturm-Liouville problem for which special points admit a high number of solutions. Finally, we handle a semilinear elliptic operator, by computing the six solutions of an equation of the form $-\Delta - f(u) = g$ studied by Solimini.
The pseudo-inverse of a graph Laplacian matrix, denoted as $L^\dagger$, finds extensive application in various graph analysis tasks. Notable examples include the calculation of electrical closeness centrality, determination of Kemeny's constant, and evaluation of resistance distance. However, existing algorithms for computing $L^\dagger$ are often computationally expensive when dealing with large graphs. To overcome this challenge, we propose novel solutions for approximating $L^\dagger$ by establishing a connection with the inverse of a Laplacian submatrix $L_v$. This submatrix is obtained by removing the $v$-th row and column from the original Laplacian matrix $L$. The key advantage of this connection is that $L_v^{-1}$ exhibits various interesting combinatorial interpretations. We present two innovative interpretations of $L_v^{-1}$ based on spanning trees and loop-erased random walks, which allow us to develop efficient sampling algorithms. Building upon these new theoretical insights, we propose two novel algorithms for efficiently approximating both electrical closeness centrality and Kemeny's constant. We extensively evaluate the performance of our algorithms on five real-life datasets. The results demonstrate that our novel approaches significantly outperform the state-of-the-art methods by several orders of magnitude in terms of both running time and estimation errors for these two graph analysis tasks. To further illustrate the effectiveness of electrical closeness centrality and Kemeny's constant, we present two case studies that showcase the practical applications of these metrics.