亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Inertial odometry (IO) using strap-down inertial measurement units (IMUs) is critical in many robotic applications where precise orientation and position tracking are essential. Prior kinematic motion model-based IO methods often use a simplified linearized IMU noise model and thus usually encounter difficulties in modeling non-deterministic errors arising from environmental disturbances and mechanical defects. In contrast, data-driven IO methods struggle to accurately model the sensor motions, often leading to generalizability and interoperability issues. To address these challenges, we present AirIMU, a hybrid approach to estimate the uncertainty, especially the non-deterministic errors, by data-driven methods and increase the generalization abilities using model-based methods. We demonstrate the adaptability of AirIMU using a full spectrum of IMUs, from low-cost automotive grades to high-end navigation grades. We also validate its effectiveness on various platforms, including hand-held devices, vehicles, and a helicopter that covers a trajectory of 262 kilometers. In the ablation study, we validate the effectiveness of our learned uncertainty in an IMU-GPS pose graph optimization experiment, achieving a 31.6\% improvement in accuracy. Experiments demonstrate that jointly training the IMU noise correction and uncertainty estimation synergistically benefits both tasks.

相關內容

In recent years, the field of aerial robotics has witnessed significant progress, finding applications in diverse domains, including post-disaster search and rescue operations. Despite these strides, the prohibitive acquisition costs associated with deploying physical multi-UAV systems have posed challenges, impeding their widespread utilization in research endeavors. To overcome these challenges, we present STAR (Swarm Technology for Aerial Robotics Research), a framework developed explicitly to improve the accessibility of aerial swarm research experiments. Our framework introduces a swarm architecture based on the Crazyflie, a low-cost, open-source, palm-sized aerial platform, well suited for experimental swarm algorithms. To augment cost-effectiveness and mitigate the limitations of employing low-cost robots in experiments, we propose a landmark-based localization module leveraging fiducial markers. This module, also serving as a target detection module, enhances the adaptability and versatility of the framework. Additionally, collision and obstacle avoidance are implemented through velocity obstacles. The presented work strives to bridge the gap between theoretical advances and tangible implementations, thus fostering progress in the field.

Traditional robotic motion planning methods often struggle with fixed resolutions in dynamically changing environments. To address these challenges, we introduce the A-OctoMap, an adaptive Octo-Tree structure that enhances spatial representation and facilitates real-time, efficient motion planning. This novel framework allows for dynamic space partitioning and multi-resolution queries, significantly improving computational efficiency and precision. Key innovations include a tree-based data structure for enhanced geometric processing, real-time map updating for accurate trajectory planning, and efficient collision detection. Our extensive testing shows superior navigation safety and efficiency in complex settings compared to conventional methods. A-OctoMap sets a new standard for adaptive spatial mapping in autonomous systems, promising significant advancements in navigating unpredictable environments.

Volume-preserving hyperelastic materials are widely used to model near-incompressible materials such as rubber and soft tissues. However, the numerical simulation of volume-preserving hyperelastic materials is notoriously challenging within this regime due to the non-convexity of the energy function. In this work, we identify the pitfalls of the popular eigenvalue clamping strategy for projecting Hessian matrices to positive semi-definiteness during Newton's method. We introduce a novel eigenvalue filtering strategy for projected Newton's method to stabilize the optimization of Neo-Hookean energy and other volume-preserving variants under high Poisson's ratio (near 0.5) and large initial volume change. Our method only requires a single line of code change in the existing projected Newton framework, while achieving significant improvement in both stability and convergence speed. We demonstrate the effectiveness and efficiency of our eigenvalue projection scheme on a variety of challenging examples and over different deformations on a large dataset.

The rise of machine learning methods on heavily resource constrained devices requires not only the choice of a suitable model architecture for the target platform, but also the optimization of the chosen model with regard to execution time consumption for inference in order to optimally utilize the available resources. Random forests and decision trees are shown to be a suitable model for such a scenario, since they are not only heavily tunable towards the total model size, but also offer a high potential for optimizing their executions according to the underlying memory architecture. In addition to the straightforward strategy of enforcing shorter paths through decision trees and hence reducing the execution time for inference, hardware-aware implementations can optimize the execution time in an orthogonal manner. One particular hardware-aware optimization is to layout the memory of decision trees in such a way, that higher probably paths are less likely to be evicted from system caches. This works particularly well when splits within tree nodes are uneven and have a high probability to visit one of the child nodes. In this paper, we present a method to reduce path lengths by rewarding uneven probability distributions during the training of decision trees at the cost of a minimal accuracy degradation. Specifically, we regularize the impurity computation of the CART algorithm in order to favor not only low impurity, but also highly asymmetric distributions for the evaluation of split criteria and hence offer a high optimization potential for a memory architecture-aware implementation. We show that especially for binary classification data sets and data sets with many samples, this form of regularization can lead to an reduction of up to approximately four times in the execution time with a minimal accuracy degradation.

With the increasing role of Natural Language Processing (NLP) in various applications, challenges concerning bias and stereotype perpetuation are accentuated, which often leads to hate speech and harm. Despite existing studies on sexism and misogyny, issues like homophobia and transphobia remain underexplored and often adopt binary perspectives, putting the safety of LGBTQIA+ individuals at high risk in online spaces. In this paper, we assess the potential harm caused by sentence completions generated by English large language models (LLMs) concerning LGBTQIA+ individuals. This is achieved using QueerBench, our new assessment framework, which employs a template-based approach and a Masked Language Modeling (MLM) task. The analysis indicates that large language models tend to exhibit discriminatory behaviour more frequently towards individuals within the LGBTQIA+ community, reaching a difference gap of 7.2% in the QueerBench score of harmfulness.

We introduce TorchOpera, a compound AI system for enhancing the safety and quality of prompts and responses for Large Language Models. TorchOpera ensures that all user prompts are safe, contextually grounded, and effectively processed, while enhancing LLM responses to be relevant and high quality. TorchOpera utilizes the vector database for contextual grounding, rule-based wrappers for flexible modifications, and specialized mechanisms for detecting and adjusting unsafe or incorrect content. We also provide a view of the compound AI system to reduce the computational cost. Extensive experiments show that TorchOpera ensures the safety, reliability, and applicability of LLMs in real-world settings while maintaining the efficiency of LLM responses.

We present RoboGen, a generative robotic agent that automatically learns diverse robotic skills at scale via generative simulation. RoboGen leverages the latest advancements in foundation and generative models. Instead of directly using or adapting these models to produce policies or low-level actions, we advocate for a generative scheme, which uses these models to automatically generate diversified tasks, scenes, and training supervisions, thereby scaling up robotic skill learning with minimal human supervision. Our approach equips a robotic agent with a self-guided propose-generate-learn cycle: the agent first proposes interesting tasks and skills to develop, and then generates corresponding simulation environments by populating pertinent objects and assets with proper spatial configurations. Afterwards, the agent decomposes the proposed high-level task into sub-tasks, selects the optimal learning approach (reinforcement learning, motion planning, or trajectory optimization), generates required training supervision, and then learns policies to acquire the proposed skill. Our work attempts to extract the extensive and versatile knowledge embedded in large-scale models and transfer them to the field of robotics. Our fully generative pipeline can be queried repeatedly, producing an endless stream of skill demonstrations associated with diverse tasks and environments.

Training recommendation systems (RecSys) faces several challenges as it requires the "data preprocessing" stage to preprocess an ample amount of raw data and feed them to the GPU for training in a seamless manner. To sustain high training throughput, state-of-the-art solutions reserve a large fleet of CPU servers for preprocessing which incurs substantial deployment cost and power consumption. Our characterization reveals that prior CPU-centric preprocessing is bottlenecked on feature generation and feature normalization operations as it fails to reap out the abundant inter-/intra-feature parallelism in RecSys preprocessing. PreSto is a storage-centric preprocessing system leveraging In-Storage Processing (ISP), which offloads the bottlenecked preprocessing operations to our ISP units. We show that PreSto outperforms the baseline CPU-centric system with a $9.6\times$ speedup in end-to-end preprocessing time, $4.3\times$ enhancement in cost-efficiency, and $11.3\times$ improvement in energyefficiency on average for production-scale RecSys preprocessing.

Robotic collectives for military and disaster response applications require coalition formation algorithms to partition robots into appropriate task teams. Collectives' missions will often incorporate tasks that require multiple high-level robot behaviors or services, which coalition formation must accommodate. The highly dynamic and unstructured application domains also necessitate that coalition formation algorithms produce near optimal solutions (i.e., >95% utility) in near real-time (i.e., <5 minutes) with very large collectives (i.e., hundreds of robots). No previous coalition formation algorithm satisfies these requirements. An initial evaluation found that traditional auction-based algorithms' runtimes are too long, even though the centralized simulator incorporated ideal conditions unlikely to occur in real-world deployments (i.e., synchronization across robots and perfect, instantaneous communication). The hedonic game-based GRAPE algorithm can produce solutions in near real-time, but cannot be applied to multiple service collectives. This manuscript integrates GRAPE and a services model, producing GRAPE-S and Pair-GRAPE-S. These algorithms and two auction baselines were evaluated using a centralized simulator with up to 1000 robots, and via the largest distributed coalition formation simulated evaluation to date, with up to 500 robots. The evaluations demonstrate that auctions transfer poorly to distributed collectives, resulting in excessive runtimes and low utility solutions. GRAPE-S satisfies the target domains' coalition formation requirements, producing near optimal solutions in near real-time, and Pair-GRAPE-S more than satisfies the domain requirements, producing optimal solutions in near real-time. GRAPE-S and Pair-GRAPE-S are the first algorithms demonstrated to support near real-time coalition formation for very large, distributed collectives with multiple services.

Learning disentanglement aims at finding a low dimensional representation which consists of multiple explanatory and generative factors of the observational data. The framework of variational autoencoder (VAE) is commonly used to disentangle independent factors from observations. However, in real scenarios, factors with semantics are not necessarily independent. Instead, there might be an underlying causal structure which renders these factors dependent. We thus propose a new VAE based framework named CausalVAE, which includes a Causal Layer to transform independent exogenous factors into causal endogenous ones that correspond to causally related concepts in data. We further analyze the model identifiabitily, showing that the proposed model learned from observations recovers the true one up to a certain degree. Experiments are conducted on various datasets, including synthetic and real word benchmark CelebA. Results show that the causal representations learned by CausalVAE are semantically interpretable, and their causal relationship as a Directed Acyclic Graph (DAG) is identified with good accuracy. Furthermore, we demonstrate that the proposed CausalVAE model is able to generate counterfactual data through "do-operation" to the causal factors.

北京阿比特科技有限公司