亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Recent work has connected adversarial attack methods and algorithmic recourse methods: both seek minimal changes to an input instance which alter a model's classification decision. It has been shown that traditional adversarial training, which seeks to minimize a classifier's susceptibility to malicious perturbations, increases the cost of generated recourse; with larger adversarial training radii correlating with higher recourse costs. From the perspective of algorithmic recourse, however, the appropriate adversarial training radius has always been unknown. Another recent line of work has motivated adversarial training with adaptive training radii to address the issue of instance-wise variable adversarial vulnerability, showing success in domains with unknown attack radii. This work studies the effects of adaptive adversarial training on algorithmic recourse costs. We establish that the improvements in model robustness induced by adaptive adversarial training show little effect on algorithmic recourse costs, providing a potential avenue for affordable robustness in domains where recoursability is critical.

相關內容

A major concern of deep learning models is the large amount of data that is required to build and train them, much of which is reliant on sensitive and personally identifiable information that is vulnerable to access by third parties. Ideas of using the quantum internet to address this issue have been previously proposed, which would enable fast and completely secure online communications. Previous work has yielded a hybrid quantum-classical transfer learning scheme for classical data and communication with a hub-spoke topology. While quantum communication is secure from eavesdrop attacks and no measurements from quantum to classical translation, due to no cloning theorem, hub-spoke topology is not ideal for quantum communication without quantum memory. Here we seek to improve this model by implementing a decentralized ring topology for the federated learning scheme, where each client is given a portion of the entire dataset and only performs training on that set. We also demonstrate the first successful use of quantum weights for quantum federated learning, which allows us to perform our training entirely in quantum.

Topic segmentation is critical for obtaining structured documents and improving downstream tasks such as information retrieval. Due to its ability of automatically exploring clues of topic shift from abundant labeled data, recent supervised neural models have greatly promoted the development of long document topic segmentation, but leaving the deeper relationship between coherence and topic segmentation underexplored. Therefore, this paper enhances the ability of supervised models to capture coherence from both logical structure and semantic similarity perspectives to further improve the topic segmentation performance, proposing Topic-aware Sentence Structure Prediction (TSSP) and Contrastive Semantic Similarity Learning (CSSL). Specifically, the TSSP task is proposed to force the model to comprehend structural information by learning the original relations between adjacent sentences in a disarrayed document, which is constructed by jointly disrupting the original document at topic and sentence levels. Moreover, we utilize inter- and intra-topic information to construct contrastive samples and design the CSSL objective to ensure that the sentences representations in the same topic have higher similarity, while those in different topics are less similar. Extensive experiments show that the Longformer with our approach significantly outperforms old state-of-the-art (SOTA) methods. Our approach improve $F_1$ of old SOTA by 3.42 (73.74 -> 77.16) and reduces $P_k$ by 1.11 points (15.0 -> 13.89) on WIKI-727K and achieves an average relative reduction of 4.3% on $P_k$ on WikiSection. The average relative $P_k$ drop of 8.38% on two out-of-domain datasets also demonstrates the robustness of our approach.

Mixed membership models, or partial membership models, are a flexible unsupervised learning method that allows each observation to belong to multiple clusters. In this paper, we propose a Bayesian mixed membership model for functional data. By using the multivariate Karhunen-Lo\`eve theorem, we are able to derive a scalable representation of Gaussian processes that maintains data-driven learning of the covariance structure. Within this framework, we establish conditional posterior consistency given a known feature allocation matrix. Compared to previous work on mixed membership models, our proposal allows for increased modeling flexibility, with the benefit of a directly interpretable mean and covariance structure. Our work is motivated by studies in functional brain imaging through electroencephalography (EEG) of children with autism spectrum disorder (ASD). In this context, our work formalizes the clinical notion of "spectrum" in terms of feature membership proportions.

Pre-trained Language Models have emerged as promising tools for predicting molecular properties, yet their development is in its early stages, necessitating further research to enhance their efficacy and address challenges such as generalization and sample efficiency. In this paper, we present a multi-view approach that combines latent spaces derived from state-of-the-art chemical models. Our approach relies on two pivotal elements: the embeddings derived from MHG-GNN, which represent molecular structures as graphs, and MoLFormer embeddings rooted in chemical language. The attention mechanism of MoLFormer is able to identify relations between two atoms even when their distance is far apart, while the GNN of MHG-GNN can more precisely capture relations among multiple atoms closely located. In this work, we demonstrate the superior performance of our proposed multi-view approach compared to existing state-of-the-art methods, including MoLFormer-XL, which was trained on 1.1 billion molecules, particularly in intricate tasks such as predicting clinical trial drug toxicity and inhibiting HIV replication. We assessed our approach using six benchmark datasets from MoleculeNet, where it outperformed competitors in five of them. Our study highlights the potential of latent space fusion and feature integration for advancing molecular property prediction. In this work, we use small versions of MHG-GNN and MoLFormer, which opens up an opportunity for further improvement when our approach uses a larger-scale dataset.

Reasoning over spans of tokens from different parts of the input is essential for natural language understanding (NLU) tasks such as fact-checking (FC), machine reading comprehension (MRC) or natural language inference (NLI). However, existing highlight-based explanations primarily focus on identifying individual important tokens or interactions only between adjacent tokens or tuples of tokens. Most notably, there is a lack of annotations capturing the human decision-making process w.r.t. the necessary interactions for informed decision-making in such tasks. To bridge this gap, we introduce SpanEx, a multi-annotator dataset of human span interaction explanations for two NLU tasks: NLI and FC. We then investigate the decision-making processes of multiple fine-tuned large language models in terms of the employed connections between spans in separate parts of the input and compare them to the human reasoning processes. Finally, we present a novel community detection based unsupervised method to extract such interaction explanations from a model's inner workings.

The problem of finding a constant bound on a term given a set of assumptions has wide applications in optimization as well as program analysis. However, in many contexts the objective term may be unbounded. Still, some sort of symbolic bound may be useful. In this paper we introduce the optimal symbolic-bound synthesis problem, and a technique that tackles this problem for non-linear arithmetic with function symbols. This allows us to automatically produce symbolic bounds on complex arithmetic expressions from a set of both equality and inequality assumptions. Our solution employs a novel combination of powerful mathematical objects -- Gr\"obner bases together with polyhedral cones -- to represent an infinite set of implied inequalities. We obtain a sound symbolic bound by reducing the objective term by this infinite set. We implemented our method in a tool, AutoBound, which we tested on problems originating from real Solidity programs. We find that AutoBound yields relevant bounds in each case, matching or nearly-matching upper bounds produced by a human analyst on the same set of programs.

Differential Privacy (DP) is a well-established framework to quantify privacy loss incurred by any algorithm. Traditional formulations impose a uniform privacy requirement for all users, which is often inconsistent with real-world scenarios in which users dictate their privacy preferences individually. This work considers the problem of mean estimation, where each user can impose their own distinct privacy level. The algorithm we propose is shown to be minimax optimal and has a near-linear run-time. Our results elicit an interesting saturation phenomenon that occurs. Namely, the privacy requirements of the most stringent users dictate the overall error rates. As a consequence, users with less but differing privacy requirements are all given more privacy than they require, in equal amounts. In other words, these privacy-indifferent users are given a nontrivial degree of privacy for free, without any sacrifice in the performance of the estimator.

2D-based Industrial Anomaly Detection has been widely discussed, however, multimodal industrial anomaly detection based on 3D point clouds and RGB images still has many untouched fields. Existing multimodal industrial anomaly detection methods directly concatenate the multimodal features, which leads to a strong disturbance between features and harms the detection performance. In this paper, we propose Multi-3D-Memory (M3DM), a novel multimodal anomaly detection method with hybrid fusion scheme: firstly, we design an unsupervised feature fusion with patch-wise contrastive learning to encourage the interaction of different modal features; secondly, we use a decision layer fusion with multiple memory banks to avoid loss of information and additional novelty classifiers to make the final decision. We further propose a point feature alignment operation to better align the point cloud and RGB features. Extensive experiments show that our multimodal industrial anomaly detection model outperforms the state-of-the-art (SOTA) methods on both detection and segmentation precision on MVTec-3D AD dataset. Code is available at //github.com/nomewang/M3DM.

It is important to detect anomalous inputs when deploying machine learning systems. The use of larger and more complex inputs in deep learning magnifies the difficulty of distinguishing between anomalous and in-distribution examples. At the same time, diverse image and text data are available in enormous quantities. We propose leveraging these data to improve deep anomaly detection by training anomaly detectors against an auxiliary dataset of outliers, an approach we call Outlier Exposure (OE). This enables anomaly detectors to generalize and detect unseen anomalies. In extensive experiments on natural language processing and small- and large-scale vision tasks, we find that Outlier Exposure significantly improves detection performance. We also observe that cutting-edge generative models trained on CIFAR-10 may assign higher likelihoods to SVHN images than to CIFAR-10 images; we use OE to mitigate this issue. We also analyze the flexibility and robustness of Outlier Exposure, and identify characteristics of the auxiliary dataset that improve performance.

We investigate a lattice-structured LSTM model for Chinese NER, which encodes a sequence of input characters as well as all potential words that match a lexicon. Compared with character-based methods, our model explicitly leverages word and word sequence information. Compared with word-based methods, lattice LSTM does not suffer from segmentation errors. Gated recurrent cells allow our model to choose the most relevant characters and words from a sentence for better NER results. Experiments on various datasets show that lattice LSTM outperforms both word-based and character-based LSTM baselines, achieving the best results.

北京阿比特科技有限公司