亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Out-of-distribution (OOD) detection is crucial for the safe deployment of neural networks. Existing CLIP-based approaches perform OOD detection by devising novel scoring functions or sophisticated fine-tuning methods. In this work, we propose SeTAR, a novel, training-free OOD detection method that leverages selective low-rank approximation of weight matrices in vision-language and vision-only models. SeTAR enhances OOD detection via post-hoc modification of the model's weight matrices using a simple greedy search algorithm. Based on SeTAR, we further propose SeTAR+FT, a fine-tuning extension optimizing model performance for OOD detection tasks. Extensive evaluations on ImageNet1K and Pascal-VOC benchmarks show SeTAR's superior performance, reducing the false positive rate by up to 18.95% and 36.80% compared to zero-shot and fine-tuning baselines. Ablation studies further validate our approach's effectiveness, robustness, and generalizability across different model backbones. Our work offers a scalable, efficient solution for OOD detection, setting a new state-of-the-art in this area.

相關內容

Data-free quantization (DFQ) is a technique that creates a lightweight network from its full-precision counterpart without the original training data, often through a synthetic dataset. Although several DFQ methods have been proposed for vision transformer (ViT) architectures, they fail to achieve efficacy in low-bit settings. Examining the existing methods, we identify that their synthetic data produce misaligned attention maps, while those of the real samples are highly aligned. From the observation of aligned attention, we find that aligning attention maps of synthetic data helps to improve the overall performance of quantized ViTs. Motivated by this finding, we devise \aname, a novel DFQ method designed for ViTs that focuses on inter-head attention similarity. First, we generate synthetic data by aligning head-wise attention responses in relation to spatial query patches. Then, we apply head-wise structural attention distillation to align the attention maps of the quantized network to those of the full-precision teacher. The experimental results show that the proposed method significantly outperforms baselines, setting a new state-of-the-art performance for data-free ViT quantization.

Graph-based holistic scene representations facilitate surgical workflow understanding and have recently demonstrated significant success. However, this task is often hindered by the limited availability of densely annotated surgical scene data. In this work, we introduce an end-to-end framework for the generation and optimization of surgical scene graphs on a downstream task. Our approach leverages the flexibility of graph-based spectral clustering and the generalization capability of foundation models to generate unsupervised scene graphs with learnable properties. We reinforce the initial spatial graph with sparse temporal connections using local matches between consecutive frames to predict temporally consistent clusters across a temporal neighborhood. By jointly optimizing the spatiotemporal relations and node features of the dynamic scene graph with the downstream task of phase segmentation, we address the costly and annotation-burdensome task of semantic scene comprehension and scene graph generation in surgical videos using only weak surgical phase labels. Further, by incorporating effective intermediate scene representation disentanglement steps within the pipeline, our solution outperforms the SOTA on the CATARACTS dataset by 8% accuracy and 10% F1 score in surgical workflow recognition

Large Language Models (LLMs) have demonstrated exceptional abilities in comprehending and generating text, motivating numerous researchers to utilize them for Information Extraction (IE) purposes, including Relation Extraction (RE). Nonetheless, most existing methods are predominantly designed for Sentence-level Relation Extraction (SentRE) tasks, which typically encompass a restricted set of relations and triplet facts within a single sentence. Furthermore, certain approaches resort to treating relations as candidate choices integrated into prompt templates, leading to inefficient processing and suboptimal performance when tackling Document-Level Relation Extraction (DocRE) tasks, which entail handling multiple relations and triplet facts distributed across a given document, posing distinct challenges. To overcome these limitations, we introduce AutoRE, an end-to-end DocRE model that adopts a novel RE extraction paradigm named RHF (Relation-Head-Facts). Unlike existing approaches, AutoRE does not rely on the assumption of known relation options, making it more reflective of real-world scenarios. Additionally, we have developed an easily extensible RE framework using a Parameters Efficient Fine Tuning (PEFT) algorithm (QLoRA). Our experiments on the RE-DocRED dataset showcase AutoRE's best performance, achieving state-of-the-art results, surpassing TAG by 10.03\% and 9.03\% respectively on the dev and test set. The code is available at //github.com/THUDM/AutoRE and the demonstration video is provided at //www.youtube.com/watch?v=IhKRsZUAxKk.

Deep Neural networks (DNNs), extensively applied across diverse disciplines, are characterized by their integrated and monolithic architectures, setting them apart from conventional software systems. This architectural difference introduces particular challenges to maintenance tasks, such as model restructuring (e.g., model compression), re-adaptation (e.g., fitting new samples), and incremental development (e.g., continual knowledge accumulation). Prior research addresses these challenges by identifying task-critical neuron layers, and dividing neural networks into semantically-similar sequential modules. However, such layer-level approaches fail to precisely identify and manipulate neuron-level semantic components, restricting their applicability to finer-grained model maintenance tasks. In this work, we implement NeuSemSlice, a novel framework that introduces the semantic slicing technique to effectively identify critical neuron-level semantic components in DNN models for semantic-aware model maintenance tasks. Specifically, semantic slicing identifies, categorizes and merges critical neurons across different categories and layers according to their semantic similarity, enabling their flexibility and effectiveness in the subsequent tasks. For semantic-aware model maintenance tasks, we provide a series of novel strategies based on semantic slicing to enhance NeuSemSlice. They include semantic components (i.e., critical neurons) preservation for model restructuring, critical neuron tuning for model re-adaptation, and non-critical neuron training for model incremental development. A thorough evaluation has demonstrated that NeuSemSlice significantly outperforms baselines in all three tasks.

Learning models whose predictions are invariant under multiple environments is a promising approach for out-of-distribution generalization. Such models are trained to extract features $X_{\text{inv}}$ where the conditional distribution $Y \mid X_{\text{inv}}$ of the label given the extracted features does not change across environments. Invariant models are also supposed to generalize to shifts in the marginal distribution $p(X_{\text{inv}})$ of the extracted features $X_{\text{inv}}$, a type of shift we call an $\textit{invariant covariate shift}$. However, we show that proposed methods for learning invariant models underperform under invariant covariate shift, either failing to learn invariant models$\unicode{x2014}$even for data generated from simple and well-studied linear-Gaussian models$\unicode{x2014}$or having poor finite-sample performance. To alleviate these problems, we propose $\textit{weighted risk invariance}$ (WRI). Our framework is based on imposing invariance of the loss across environments subject to appropriate reweightings of the training examples. We show that WRI provably learns invariant models, i.e. discards spurious correlations, in linear-Gaussian settings. We propose a practical algorithm to implement WRI by learning the density $p(X_{\text{inv}})$ and the model parameters simultaneously, and we demonstrate empirically that WRI outperforms previous invariant learning methods under invariant covariate shift.

The distribution of subpopulations is an important property hidden within a dataset. Uncovering and analyzing the subpopulation distribution within datasets provides a comprehensive understanding of the datasets, standing as a powerful tool beneficial to various downstream tasks, including Dataset Subpopulation Organization, Subpopulation Shift, and Slice Discovery. Despite its importance, there has been no work that systematically explores the subpopulation distribution of datasets to our knowledge. To address the limitation and solve all the mentioned tasks in a unified way, we introduce a novel concept of subpopulation structures to represent, analyze, and utilize subpopulation distributions within datasets. To characterize the structures in an interpretable manner, we propose the Subpopulation Structure Discovery with Large Language Models (SSD-LLM) framework, which employs world knowledge and instruction-following capabilities of Large Language Models (LLMs) to linguistically analyze informative image captions and summarize the structures. Furthermore, we propose complete workflows to address downstream tasks, named Task-specific Tuning, showcasing the application of the discovered structure to a spectrum of subpopulation-related tasks, including dataset subpopulation organization, subpopulation shift, and slice discovery. Furthermore, we propose complete workflows to address downstream tasks, named Task-specific Tuning, showcasing the application of the discovered structure to a spectrum of subpopulation-related tasks, including dataset subpopulation organization, subpopulation shift, and slice discovery.

Recent work has established an alternative to traditional multi-layer perceptron neural networks in the form of Kolmogorov-Arnold Networks (KAN). The general KAN framework uses learnable activation functions on the edges of the computational graph followed by summation on nodes. The learnable edge activation functions in the original implementation are basis spline functions (B-Spline). Here, we present a model in which learnable grids of B-Spline activation functions are replaced by grids of re-weighted sine functions. We show that this leads to better or comparable numerical performance to B-Spline KAN models on the MNIST benchmark, while also providing a substantial speed increase on the order of 4-8 times.

Detecting and rejecting unknown out-of-distribution (OOD) samples is critical for deployed neural networks to void unreliable predictions. In real-world scenarios, however, the efficacy of existing OOD detection methods is often impeded by the inherent imbalance of in-distribution (ID) data, which causes significant performance decline. Through statistical observations, we have identified two common challenges faced by different OOD detectors: misidentifying tail class ID samples as OOD, while erroneously predicting OOD samples as head class from ID. To explain this phenomenon, we introduce a generalized statistical framework, termed ImOOD, to formulate the OOD detection problem on imbalanced data distribution. Consequently, the theoretical analysis reveals that there exists a class-aware bias item between balanced and imbalanced OOD detection, which contributes to the performance gap. Building upon this finding, we present a unified training-time regularization technique to mitigate the bias and boost imbalanced OOD detectors across architecture designs. Our theoretically grounded method translates into consistent improvements on the representative CIFAR10-LT, CIFAR100-LT, and ImageNet-LT benchmarks against several state-of-the-art OOD detection approaches. Code will be made public soon.

Out-of-distribution (OOD) detection is critical to ensuring the reliability and safety of machine learning systems. For instance, in autonomous driving, we would like the driving system to issue an alert and hand over the control to humans when it detects unusual scenes or objects that it has never seen before and cannot make a safe decision. This problem first emerged in 2017 and since then has received increasing attention from the research community, leading to a plethora of methods developed, ranging from classification-based to density-based to distance-based ones. Meanwhile, several other problems are closely related to OOD detection in terms of motivation and methodology. These include anomaly detection (AD), novelty detection (ND), open set recognition (OSR), and outlier detection (OD). Despite having different definitions and problem settings, these problems often confuse readers and practitioners, and as a result, some existing studies misuse terms. In this survey, we first present a generic framework called generalized OOD detection, which encompasses the five aforementioned problems, i.e., AD, ND, OSR, OOD detection, and OD. Under our framework, these five problems can be seen as special cases or sub-tasks, and are easier to distinguish. Then, we conduct a thorough review of each of the five areas by summarizing their recent technical developments. We conclude this survey with open challenges and potential research directions.

Generalization to out-of-distribution (OOD) data is a capability natural to humans yet challenging for machines to reproduce. This is because most learning algorithms strongly rely on the i.i.d.~assumption on source/target data, which is often violated in practice due to domain shift. Domain generalization (DG) aims to achieve OOD generalization by using only source data for model learning. Since first introduced in 2011, research in DG has made great progresses. In particular, intensive research in this topic has led to a broad spectrum of methodologies, e.g., those based on domain alignment, meta-learning, data augmentation, or ensemble learning, just to name a few; and has covered various vision applications such as object recognition, segmentation, action recognition, and person re-identification. In this paper, for the first time a comprehensive literature review is provided to summarize the developments in DG for computer vision over the past decade. Specifically, we first cover the background by formally defining DG and relating it to other research fields like domain adaptation and transfer learning. Second, we conduct a thorough review into existing methods and present a categorization based on their methodologies and motivations. Finally, we conclude this survey with insights and discussions on future research directions.

北京阿比特科技有限公司