亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Embedded devices are specialised devices designed for one or only a few purposes. They are often part of a larger system, through wired or wireless connection. Those embedded devices that are connected to other computers or embedded systems through the Internet are called Internet of Things (IoT for short) devices. With their widespread usage and their insufficient protection, these devices are increasingly becoming the target of malware attacks. Companies often cut corners to save manufacturing costs or misconfigure when producing these devices. This can be lack of software updates, ports left open or security defects by design. Although these devices may not be as powerful as a regular computer, their large number makes them suitable candidates for botnets. Other types of IoT devices can even cause health problems since there are even pacemakers connected to the Internet. This means, that without sufficient defence, even directed assaults are possible against people. The goal of this thesis project is to provide better security for these devices with the help of machine learning algorithms and reverse engineering tools. Specifically, I study the applicability of control-flow related data of executables for malware detection. I present a malware detection method with two phases. The first phase extracts control-flow related data using static binary analysis. The second phase classifies binary executables as either malicious or benign using a neural network model. I train the model using a dataset of malicious and benign ARM applications.

相關內容

There is currently a focus on statistical methods which can use historical trial information to help accelerate the discovery, development and delivery of medicine. Bayesian methods can be constructed so that the borrowing is "dynamic" in the sense that the similarity of the data helps to determine how much information is used. In the time to event setting with one historical data set, a popular model for a range of baseline hazards is the piecewise exponential model where the time points are fixed and a borrowing structure is imposed on the model. Although convenient for implementation this approach effects the borrowing capability of the model. We propose a Bayesian model which allows the time points to vary and a dependency to be placed between the baseline hazards. This serves to smooth the posterior baseline hazard improving both model estimation and borrowing characteristics. We explore a variety of prior structures for the borrowing within our proposed model and assess their performance against established approaches. We demonstrate that this leads to improved type I error in the presence of prior data conflict and increased power. We have developed accompanying software which is freely available and enables easy implementation of the approach.

Scattering networks yield powerful and robust hierarchical image descriptors which do not require lengthy training and which work well with very few training data. However, they rely on sampling the scale dimension. Hence, they become sensitive to scale variations and are unable to generalize to unseen scales. In this work, we define an alternative feature representation based on the Riesz transform. We detail and analyze the mathematical foundations behind this representation. In particular, it inherits scale equivariance from the Riesz transform and completely avoids sampling of the scale dimension. Additionally, the number of features in the representation is reduced by a factor four compared to scattering networks. Nevertheless, our representation performs comparably well for texture classification with an interesting addition: scale equivariance. Our method yields superior performance when dealing with scales outside of those covered by the training dataset. The usefulness of the equivariance property is demonstrated on the digit classification task, where accuracy remains stable even for scales four times larger than the one chosen for training. As a second example, we consider classification of textures.

Stabbing Planes (also known as Branch and Cut) is a proof system introduced very recently which, informally speaking, extends the DPLL method by branching on integer linear inequalities instead of single variables. The techniques known so far to prove size and depth lower bounds for Stabbing Planes are generalizations of those used for the Cutting Planes proof system. For size lower bounds these are established by monotone circuit arguments, while for depth these are found via communication complexity and protection. As such these bounds apply for lifted versions of combinatorial statements. Rank lower bounds for Cutting Planes are also obtained by geometric arguments called protection lemmas. In this work we introduce two new geometric approaches to prove size/depth lower bounds in Stabbing Planes working for any formula: (1) the antichain method, relying on Sperner's Theorem and (2) the covering method which uses results on essential coverings of the boolean cube by linear polynomials, which in turn relies on Alon's combinatorial Nullenstellensatz. We demonstrate their use on classes of combinatorial principles such as the Pigeonhole principle, the Tseitin contradictions and the Linear Ordering Principle. By the first method we prove almost linear size lower bounds and optimal logarithmic depth lower bounds for the Pigeonhole principle and analogous lower bounds for the Tseitin contradictions over the complete graph and for the Linear Ordering Principle. By the covering method we obtain a superlinear size lower bound and a logarithmic depth lower bound for Stabbing Planes proof of Tseitin contradictions over a grid graph.

In the conventional change detection (CD) pipeline, two manually registered and labeled remote sensing datasets serve as the input of the model for training and prediction. However, in realistic scenarios, data from different periods or sensors could fail to be aligned as a result of various coordinate systems. Geometric distortion caused by coordinate shifting remains a thorny issue for CD algorithms. In this paper, we propose a reusable self-supervised framework for bitemporal geometric distortion in CD tasks. The whole framework is composed of Pretext Representation Pre-training, Bitemporal Image Alignment, and Down-stream Decoder Fine-Tuning. With only single-stage pre-training, the key components of the framework can be reused for assistance in the bitemporal image alignment, while simultaneously enhancing the performance of the CD decoder. Experimental results in 2 large-scale realistic scenarios demonstrate that our proposed method can alleviate the bitemporal geometric distortion in CD tasks.

Autoencoders, which consist of an encoder and a decoder, are widely used in machine learning for dimension reduction of high-dimensional data. The encoder embeds the input data manifold into a lower-dimensional latent space, while the decoder represents the inverse map, providing a parametrization of the data manifold by the manifold in latent space. A good regularity and structure of the embedded manifold may substantially simplify further data processing tasks such as cluster analysis or data interpolation. We propose and analyze a novel regularization for learning the encoder component of an autoencoder: a loss functional that prefers isometric, extrinsically flat embeddings and allows to train the encoder on its own. To perform the training it is assumed that for pairs of nearby points on the input manifold their local Riemannian distance and their local Riemannian average can be evaluated. The loss functional is computed via Monte Carlo integration with different sampling strategies for pairs of points on the input manifold. Our main theorem identifies a geometric loss functional of the embedding map as the $\Gamma$-limit of the sampling-dependent loss functionals. Numerical tests, using image data that encodes different explicitly given data manifolds, show that smooth manifold embeddings into latent space are obtained. Due to the promotion of extrinsic flatness, these embeddings are regular enough such that interpolation between not too distant points on the manifold is well approximated by linear interpolation in latent space as one possible postprocessing.

The aim of change-point detection is to discover the changes in behavior that lie behind time sequence data. In this article, we study the case where the data comes from an inhomogeneous Poisson process or a marked Poisson process. We present a methodology for detecting multiple offline change-points based on a minimum contrast estimator. In particular, we explain how to handle the continuous nature of the process with the available discrete observations. In addition, we select the appropriate number of regimes via a cross-validation procedure which is really handy here due to the nature of the Poisson process. Through experiments on simulated and real data sets, we demonstrate the interest of the proposed method. The proposed method has been implemented in the R package \texttt{CptPointProcess} R.

Utilizing massive web-scale datasets has led to unprecedented performance gains in machine learning models, but also imposes outlandish compute requirements for their training. In order to improve training and data efficiency, we here push the limits of pruning large-scale multimodal datasets for training CLIP-style models. Today's most effective pruning method on ImageNet clusters data samples into separate concepts according to their embedding and prunes away the most prototypical samples. We scale this approach to LAION and improve it by noting that the pruning rate should be concept-specific and adapted to the complexity of the concept. Using a simple and intuitive complexity measure, we are able to reduce the training cost to a quarter of regular training. By filtering from the LAION dataset, we find that training on a smaller set of high-quality data can lead to higher performance with significantly lower training costs. More specifically, we are able to outperform the LAION-trained OpenCLIP-ViT-B32 model on ImageNet zero-shot accuracy by 1.1p.p. while only using 27.7% of the data and training compute. Despite a strong reduction in training cost, we also see improvements on ImageNet dist. shifts, retrieval tasks and VTAB. On the DataComp Medium benchmark, we achieve a new state-of-the-art ImageNet zero-shot accuracy and a competitive average zero-shot accuracy on 38 evaluation tasks.

In recent years, the amount of data available on the internet and the number of users who utilize the Internet have increased at an unparalleled pace. The exponential development in the quantity of digital information accessible and the number of Internet users has created the possibility for information overload, impeding fast access to items of interest on the Internet. Information retrieval systems like as Google, DevilFinder, and Altavista have partly overcome this challenge, but prioritizing and customization of information (where a system maps accessible material to a user's interests and preferences) were lacking. This has resulted in a higher-than-ever need for recommender systems. Recommender systems are information filtering systems that address the issue of information overload by filtering important information fragments from a huge volume of dynamically produced data based on the user's interests, favorite things, preferences and ratings on the desired item. Recommender systems can figure out if a person would like an item or not based on their profile.

Agents centered around Large Language Models (LLMs) are now capable of automating mobile device operations for users. After fine-tuning to learn a user's mobile operations, these agents can adhere to high-level user instructions online. They execute tasks such as goal decomposition, sequencing of sub-goals, and interactive environmental exploration, until the final objective is achieved. However, privacy concerns related to personalized user data arise during mobile operations, requiring user confirmation. Moreover, users' real-world operations are exploratory, with action data being complex and redundant, posing challenges for agent learning. To address these issues, in our practical application, we have designed interactive tasks between agents and humans to identify sensitive information and align with personalized user needs. Additionally, we integrated Standard Operating Procedure (SOP) information within the model's in-context learning to enhance the agent's comprehension of complex task execution. Our approach is evaluated on the new device control benchmark AitW, which encompasses 30K unique instructions across multi-step tasks, including application operation, web searching, and web shopping. Experimental results show that the SOP-based agent achieves state-of-the-art performance without incurring additional inference costs, boasting an overall action success rate of 66.92%.

In large-scale systems there are fundamental challenges when centralised techniques are used for task allocation. The number of interactions is limited by resource constraints such as on computation, storage, and network communication. We can increase scalability by implementing the system as a distributed task-allocation system, sharing tasks across many agents. However, this also increases the resource cost of communications and synchronisation, and is difficult to scale. In this paper we present four algorithms to solve these problems. The combination of these algorithms enable each agent to improve their task allocation strategy through reinforcement learning, while changing how much they explore the system in response to how optimal they believe their current strategy is, given their past experience. We focus on distributed agent systems where the agents' behaviours are constrained by resource usage limits, limiting agents to local rather than system-wide knowledge. We evaluate these algorithms in a simulated environment where agents are given a task composed of multiple subtasks that must be allocated to other agents with differing capabilities, to then carry out those tasks. We also simulate real-life system effects such as networking instability. Our solution is shown to solve the task allocation problem to 6.7% of the theoretical optimal within the system configurations considered. It provides 5x better performance recovery over no-knowledge retention approaches when system connectivity is impacted, and is tested against systems up to 100 agents with less than a 9% impact on the algorithms' performance.

北京阿比特科技有限公司