亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Model quantization and compression is widely used techniques to reduce usage of computing resource at inference time. While state-of-the-art works have been achieved reasonable accuracy with higher bit such as 4bit or 8bit, but still it is challenging to quantize/compress a model further, e.g., 1bit or 2bit. To overcome the challenge, we focus on outliers in weights of a pre-trained model which disrupt effective lower bit quantization and compression. In this work, we propose Range Restriction Loss (R2-Loss) for building lower bit quantization and compression friendly models by removing outliers from weights during pre-training. By effectively restricting range of weights, we mold the overall distribution into a tight shape to ensure high quantization bit resolution, therefore allowing model compression and quantization techniques can to utilize their limited numeric representation powers better. We introduce three different, L-inf R2-Loss, its extension Margin R2-Loss and a new Soft-Min-MaxR2-Loss to be used as an auxiliary loss during full-precision model training. These R2-Loss can be used in different cases such as L-inf and Margin R2-Loss would be effective for symmetric quantization, while Soft-Min-Max R2-Loss shows better performance for model compression. In our experiment, R2-Loss improves lower bit quantization accuracy with state-of-the-art post-training quantization (PTQ), quantization-aware training (QAT), and model compression techniques. With R2-Loss, MobileNet-V2 2bit weight and 8bit activation PTQ, MobileNet-V1 2bit weight and activation QAT, ResNet18 1bit weight compression are improved to 59.49% from 50.66%, 59.05% from 55.96%, and 52.58% from 45.54%, respectively.

相關內容

ACM/IEEE第23屆模型驅動工程語言和系統國際會議,是模型驅動軟件和系統工程的首要會議系列,由ACM-SIGSOFT和IEEE-TCSE支持組織。自1998年以來,模型涵蓋了建模的各個方面,從語言和方法到工具和應用程序。模特的參加者來自不同的背景,包括研究人員、學者、工程師和工業專業人士。MODELS 2019是一個論壇,參與者可以圍繞建模和模型驅動的軟件和系統交流前沿研究成果和創新實踐經驗。今年的版本將為建模社區提供進一步推進建模基礎的機會,并在網絡物理系統、嵌入式系統、社會技術系統、云計算、大數據、機器學習、安全、開源等新興領域提出建模的創新應用以及可持續性。 官網鏈接: · IPM · 線性的 · UniFormer · 優化器 ·
2024 年 3 月 21 日

The connections between (convex) optimization and (logconcave) sampling have been considerably enriched in the past decade with many conceptual and mathematical analogies. For instance, the Langevin algorithm can be viewed as a sampling analogue of gradient descent and has condition-number-dependent guarantees on its performance. In the early 1990s, Nesterov and Nemirovski developed the Interior-Point Method (IPM) for convex optimization based on self-concordant barriers, providing efficient algorithms for structured convex optimization, often faster than the general method. This raises the following question: can we develop an analogous IPM for structured sampling problems? In 2012, Kannan and Narayanan proposed the Dikin walk for uniformly sampling polytopes, and an improved analysis was given in 2020 by Laddha-Lee-Vempala. The Dikin walk uses a local metric defined by a self-concordant barrier for linear constraints. Here we generalize this approach by developing and adapting IPM machinery together with the Dikin walk for poly-time sampling algorithms. Our IPM-based sampling framework provides an efficient warm start and goes beyond uniform distributions and linear constraints. We illustrate the approach on important special cases, in particular giving the fastest algorithms to sample uniform, exponential, or Gaussian distributions on a truncated PSD cone. The framework is general and can be applied to other sampling algorithms.

A critical bottleneck limiting imitation learning in robotics is the lack of data. This problem is more severe in mobile manipulation, where collecting demonstrations is harder than in stationary manipulation due to the lack of available and easy-to-use teleoperation interfaces. In this work, we demonstrate TeleMoMa, a general and modular interface for whole-body teleoperation of mobile manipulators. TeleMoMa unifies multiple human interfaces including RGB and depth cameras, virtual reality controllers, keyboard, joysticks, etc., and any combination thereof. In its more accessible version, TeleMoMa works using simply vision (e.g., an RGB-D camera), lowering the entry bar for humans to provide mobile manipulation demonstrations. We demonstrate the versatility of TeleMoMa by teleoperating several existing mobile manipulators - PAL Tiago++, Toyota HSR, and Fetch - in simulation and the real world. We demonstrate the quality of the demonstrations collected with TeleMoMa by training imitation learning policies for mobile manipulation tasks involving synchronized whole-body motion. Finally, we also show that TeleMoMa's teleoperation channel enables teleoperation on site, looking at the robot, or remote, sending commands and observations through a computer network, and perform user studies to evaluate how easy it is for novice users to learn to collect demonstrations with different combinations of human interfaces enabled by our system. We hope TeleMoMa becomes a helpful tool for the community enabling researchers to collect whole-body mobile manipulation demonstrations. For more information and video results, //robin-lab.cs.utexas.edu/telemoma-web.

There has been a significant societal push towards sustainable practices, including in computing. Modern interactive workloads such as geo-distributed web-services exhibit various spatiotemporal and performance flexibility, enabling the possibility to adapt the location, time, and intensity of processing to align with the availability of renewable and low-carbon energy. An example is a web application hosted across multiple cloud regions, each with varying carbon intensity based on their local electricity mix. Distributed load-balancing enables the exploitation of low-carbon energy through load migration across regions, reducing web applications carbon footprint. In this paper, we present CASPER, a carbon-aware scheduling and provisioning system that primarily minimizes the carbon footprint of distributed web services while also respecting their Service Level Objectives (SLO). We formulate CASPER as an multi-objective optimization problem that considers both the variable carbon intensity and latency constraints of the network. Our evaluation reveals the significant potential of CASPER in achieving substantial reductions in carbon emissions. Compared to baseline methods, CASPER demonstrates improvements of up to 70% with no latency performance degradation.

Traditional approaches to neuroevolution often start from scratch. This becomes prohibitively expensive in terms of computational and data requirements when targeting modern, deep neural networks. Using a warm start could be highly advantageous, e.g., using previously trained networks, potentially from different sources. This moreover enables leveraging the benefits of transfer learning (in particular vastly reduced training effort). However, recombining trained networks is non-trivial because architectures and feature representations typically differ. Consequently, a straightforward exchange of layers tends to lead to a performance breakdown. We overcome this by matching the layers of parent networks based on their connectivity, identifying potential crossover points. To correct for differing feature representations between these layers we employ stitching, which merges the networks by introducing new layers at crossover points. To train the merged network, only stitching layers need to be considered. New networks can then be created by selecting a subnetwork by choosing which stitching layers to (not) use. Assessing their performance is efficient as only their evaluation on data is required. We experimentally show that our approach enables finding networks that represent novel trade-offs between performance and computational cost, with some even dominating the original networks.

Trajectory computing is a pivotal domain encompassing trajectory data management and mining, garnering widespread attention due to its crucial role in various practical applications such as location services, urban traffic, and public safety. Traditional methods, focusing on simplistic spatio-temporal features, face challenges of complex calculations, limited scalability, and inadequate adaptability to real-world complexities. In this paper, we present a comprehensive review of the development and recent advances in deep learning for trajectory computing (DL4Traj). We first define trajectory data and provide a brief overview of widely-used deep learning models. Systematically, we explore deep learning applications in trajectory management (pre-processing, storage, analysis, and visualization) and mining (trajectory-related forecasting, trajectory-related recommendation, trajectory classification, travel time estimation, anomaly detection, and mobility generation). Notably, we encapsulate recent advancements in Large Language Models (LLMs) that hold the potential to augment trajectory computing. Additionally, we summarize application scenarios, public datasets, and toolkits. Finally, we outline current challenges in DL4Traj research and propose future directions. Relevant papers and open-source resources have been collated and are continuously updated at: \href{//github.com/yoshall/Awesome-Trajectory-Computing}{DL4Traj Repo}.

Autonomic computing investigates how systems can achieve (user) specified control outcomes on their own, without the intervention of a human operator. Autonomic computing fundamentals have been substantially influenced by those of control theory for closed and open-loop systems. In practice, complex systems may exhibit a number of concurrent and inter-dependent control loops. Despite research into autonomic models for managing computer resources, ranging from individual resources (e.g., web servers) to a resource ensemble (e.g., multiple resources within a data center), research into integrating Artificial Intelligence (AI) and Machine Learning (ML) to improve resource autonomy and performance at scale continues to be a fundamental challenge. The integration of AI/ML to achieve such autonomic and self-management of systems can be achieved at different levels of granularity, from full to human-in-the-loop automation. In this article, leading academics, researchers, practitioners, engineers, and scientists in the fields of cloud computing, AI/ML, and quantum computing join to discuss current research and potential future directions for these fields. Further, we discuss challenges and opportunities for leveraging AI and ML in next generation computing for emerging computing paradigms, including cloud, fog, edge, serverless and quantum computing environments.

Traffic forecasting is an important factor for the success of intelligent transportation systems. Deep learning models including convolution neural networks and recurrent neural networks have been applied in traffic forecasting problems to model the spatial and temporal dependencies. In recent years, to model the graph structures in the transportation systems as well as the contextual information, graph neural networks (GNNs) are introduced as new tools and have achieved the state-of-the-art performance in a series of traffic forecasting problems. In this survey, we review the rapidly growing body of recent research using different GNNs, e.g., graph convolutional and graph attention networks, in various traffic forecasting problems, e.g., road traffic flow and speed forecasting, passenger flow forecasting in urban rail transit systems, demand forecasting in ride-hailing platforms, etc. We also present a collection of open data and source resources for each problem, as well as future research directions. To the best of our knowledge, this paper is the first comprehensive survey that explores the application of graph neural networks for traffic forecasting problems. We have also created a public Github repository to update the latest papers, open data and source resources.

Reinforcement learning (RL) is a popular paradigm for addressing sequential decision tasks in which the agent has only limited environmental feedback. Despite many advances over the past three decades, learning in many domains still requires a large amount of interaction with the environment, which can be prohibitively expensive in realistic scenarios. To address this problem, transfer learning has been applied to reinforcement learning such that experience gained in one task can be leveraged when starting to learn the next, harder task. More recently, several lines of research have explored how tasks, or data samples themselves, can be sequenced into a curriculum for the purpose of learning a problem that may otherwise be too difficult to learn from scratch. In this article, we present a framework for curriculum learning (CL) in reinforcement learning, and use it to survey and classify existing CL methods in terms of their assumptions, capabilities, and goals. Finally, we use our framework to find open problems and suggest directions for future RL curriculum learning research.

Distant supervision can effectively label data for relation extraction, but suffers from the noise labeling problem. Recent works mainly perform soft bag-level noise reduction strategies to find the relatively better samples in a sentence bag, which is suboptimal compared with making a hard decision of false positive samples in sentence level. In this paper, we introduce an adversarial learning framework, which we named DSGAN, to learn a sentence-level true-positive generator. Inspired by Generative Adversarial Networks, we regard the positive samples generated by the generator as the negative samples to train the discriminator. The optimal generator is obtained until the discrimination ability of the discriminator has the greatest decline. We adopt the generator to filter distant supervision training dataset and redistribute the false positive instances into the negative set, in which way to provide a cleaned dataset for relation classification. The experimental results show that the proposed strategy significantly improves the performance of distant supervision relation extraction comparing to state-of-the-art systems.

Dynamic programming (DP) solves a variety of structured combinatorial problems by iteratively breaking them down into smaller subproblems. In spite of their versatility, DP algorithms are usually non-differentiable, which hampers their use as a layer in neural networks trained by backpropagation. To address this issue, we propose to smooth the max operator in the dynamic programming recursion, using a strongly convex regularizer. This allows to relax both the optimal value and solution of the original combinatorial problem, and turns a broad class of DP algorithms into differentiable operators. Theoretically, we provide a new probabilistic perspective on backpropagating through these DP operators, and relate them to inference in graphical models. We derive two particular instantiations of our framework, a smoothed Viterbi algorithm for sequence prediction and a smoothed DTW algorithm for time-series alignment. We showcase these instantiations on two structured prediction tasks and on structured and sparse attention for neural machine translation.

北京阿比特科技有限公司