亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

In response to the growing popularity of Machine Learning (ML) techniques to solve problems in various industries, various malicious groups have started to target such techniques in their attack plan. However, as ML models are constantly updated with continuous data, it is very hard to monitor the integrity of ML models. One probable solution would be to use hashing techniques. Regardless of how that would mean re-hashing the model each time the model is trained on newer data which is computationally expensive and not a feasible solution for ML models that are trained on continuous data. Therefore, in this paper, we propose a model integrity-checking mechanism that uses model watermarking techniques to monitor the integrity of ML models. We then demonstrate that our proposed technique can monitor the integrity of ML models even when the model is further trained on newer data with a low computational cost. Furthermore, the integrity checking mechanism can be used on Deep Learning models that work on complex data distributions such as Cyber-Physical System applications.

相關內容

Integration:Integration, the VLSI Journal。 Explanation:集成,VLSI雜志。 Publisher:Elsevier。 SIT:

This paper studies a house allocation problem in a networked housing market, where agents can invite others to join the system in order to enrich their options. Top Trading Cycle is a well-known matching mechanism that achieves a set of desirable properties in a market without invitations. However, under a tree-structured networked market, existing agents have to strategically propagate the barter market as their invitees may compete in the same house with them. Our impossibility result shows that TTC cannot work properly in a networked housing market. Hence, we characterize the possible competitions between inviters and invitees, which lead agents to fail to refer others truthfully (strategy-proof). We then present a novel mechanism based on TTC, avoiding the aforementioned competition to ensure all agents report preference and propagate the barter market truthfully. Unlike the existing mechanisms, the agents' preferences are less restricted under our mechanism. Furthermore, we show by simulations that our mechanism outperforms the existing matching mechanisms in terms of the number of swaps and agents' satisfaction.

Recently, diffusion models (DMs) have demonstrated their advantageous potential for generative tasks. Widespread interest exists in incorporating DMs into downstream applications, such as producing or editing photorealistic images. However, practical deployment and unprecedented power of DMs raise legal issues, including copyright protection and monitoring of generated content. In this regard, watermarking has been a proven solution for copyright protection and content monitoring, but it is underexplored in the DMs literature. Specifically, DMs generate samples from longer tracks and may have newly designed multimodal structures, necessitating the modification of conventional watermarking pipelines. To this end, we conduct comprehensive analyses and derive a recipe for efficiently watermarking state-of-the-art DMs (e.g., Stable Diffusion), via training from scratch or finetuning. Our recipe is straightforward but involves empirically ablated implementation details, providing a solid foundation for future research on watermarking DMs. Our Code: //github.com/yunqing-me/WatermarkDM.

Data heterogeneity is an inherent challenge that hinders the performance of federated learning (FL). Recent studies have identified the biased classifiers of local models as the key bottleneck. Previous attempts have used classifier calibration after FL training, but this approach falls short in improving the poor feature representations caused by training-time classifier biases. Resolving the classifier bias dilemma in FL requires a full understanding of the mechanisms behind the classifier. Recent advances in neural collapse have shown that the classifiers and feature prototypes under perfect training scenarios collapse into an optimal structure called simplex equiangular tight frame (ETF). Building on this neural collapse insight, we propose a solution to the FL's classifier bias problem by utilizing a synthetic and fixed ETF classifier during training. The optimal classifier structure enables all clients to learn unified and optimal feature representations even under extremely heterogeneous data. We devise several effective modules to better adapt the ETF structure in FL, achieving both high generalization and personalization. Extensive experiments demonstrate that our method achieves state-of-the-art performances on CIFAR-10, CIFAR-100, and Tiny-ImageNet.

Line segments are ubiquitous in our human-made world and are increasingly used in vision tasks. They are complementary to feature points thanks to their spatial extent and the structural information they provide. Traditional line detectors based on the image gradient are extremely fast and accurate, but lack robustness in noisy images and challenging conditions. Their learned counterparts are more repeatable and can handle challenging images, but at the cost of a lower accuracy and a bias towards wireframe lines. We propose to combine traditional and learned approaches to get the best of both worlds: an accurate and robust line detector that can be trained in the wild without ground truth lines. Our new line segment detector, DeepLSD, processes images with a deep network to generate a line attraction field, before converting it to a surrogate image gradient magnitude and angle, which is then fed to any existing handcrafted line detector. Additionally, we propose a new optimization tool to refine line segments based on the attraction field and vanishing points. This refinement improves the accuracy of current deep detectors by a large margin. We demonstrate the performance of our method on low-level line detection metrics, as well as on several downstream tasks using multiple challenging datasets. The source code and models are available at //github.com/cvg/DeepLSD.

Decentralized applications rely on non-centralized technical infrastructures and coordination principles. Without trusted third parties, their execution is not controlled by entities exercising centralized coordination but is instead realized through technologies supporting distribution such as blockchains and serverless computing. Executing decentralized applications with these technologies, however, is challenging due to the limited transparency and insight in the execution, especially when involving centralized cloud platforms. This paper extends an approach for execution and instance tracking on blockchains and cloud platforms permitting distributed parties to observe the instances and states of executable models. The approach is extended with (1.) a metamodel describing the concepts for instance tracking on cloud platforms independent of concrete models or implementation, (2.) a multidimensional data model realizing the concepts accordingly, permitting the verifiable storage, tracking, and analysis of execution states for distributed parties, and (3.) an implementation on the Ethereum blockchain and Amazon Web Services (AWS) using state machine models. Towards supporting decentralized applications with high scalability and distribution requirements, the approach establishes a consistent view on instances for distributed parties to track and analyze the execution along multiple dimensions such as specific clients and execution engines.

Many complex engineering systems can be represented in a topological form, such as graphs. This paper utilizes a machine learning technique called Geometric Deep Learning (GDL) to aid designers with challenging, graph-centric design problems. The strategy presented here is to take the graph data and apply GDL to seek the best realizable performing solution effectively and efficiently with lower computational costs. This case study used here is the synthesis of analog electrical circuits that attempt to match a specific frequency response within a particular frequency range. Previous studies utilized an enumeration technique to generate 43,249 unique undirected graphs presenting valid potential circuits. Unfortunately, determining the sizing and performance of many circuits can be too expensive. To reduce computational costs with a quantified trade-off in accuracy, the fraction of the circuit graphs and their performance are used as input data to a classification-focused GDL model. Then, the GDL model can be used to predict the remainder cheaply, thus, aiding decision-makers in the search for the best graph solutions. The results discussed in this paper show that additional graph-based features are useful, favorable total set classification accuracy of 80\% in using only 10\% of the graphs, and iteratively-built GDL models can further subdivide the graphs into targeted groups with medians significantly closer to the best graph and containing 87 of the top 100 best performing graphs.

Copyright protection for deep neural networks (DNNs) is an urgent need for AI corporations. To trace illegally distributed model copies, DNN watermarking is an emerging technique for embedding and verifying secret identity messages in the prediction behaviors or the model internals. Sacrificing less functionality and involving more knowledge about the target DNN, the latter branch called \textit{white-box DNN watermarking} is believed to be accurate, credible and secure against most known watermark removal attacks, with emerging research efforts in both the academy and the industry. In this paper, we present the first systematic study on how the mainstream white-box DNN watermarks are commonly vulnerable to neural structural obfuscation with \textit{dummy neurons}, a group of neurons which can be added to a target model but leave the model behavior invariant. Devising a comprehensive framework to automatically generate and inject dummy neurons with high stealthiness, our novel attack intensively modifies the architecture of the target model to inhibit the success of watermark verification. With extensive evaluation, our work for the first time shows that nine published watermarking schemes require amendments to their verification procedures.

The detection of exoplanets with the radial velocity method consists in detecting variations of the stellar velocity caused by an unseen sub-stellar companion. Instrumental errors, irregular time sampling, and different noise sources originating in the intrinsic variability of the star can hinder the interpretation of the data, and even lead to spurious detections. In recent times, work began to emerge in the field of extrasolar planets that use Machine Learning algorithms, some with results that exceed those obtained with the traditional techniques in the field. We seek to explore the scope of the neural networks in the radial velocity method, in particular for exoplanet detection in the presence of correlated noise of stellar origin. In this work, a neural network is proposed to replace the computation of the significance of the signal detected with the radial velocity method and to classify it as of planetary origin or not. The algorithm is trained using synthetic data of systems with and without planetary companions. We injected realistic correlated noise in the simulations, based on previous studies of the behaviour of stellar activity. The performance of the network is compared to the traditional method based on null hypothesis significance testing. The network achieves 28 % fewer false positives. The improvement is observed mainly in the detection of small-amplitude signals associated with low-mass planets. In addition, its execution time is five orders of magnitude faster than the traditional method. The superior performance exhibited by the algorithm has only been tested on simulated radial velocity data so far. Although in principle it should be straightforward to adapt it for use in real time series, its performance has to be tested thoroughly. Future work should permit evaluating its potential for adoption as a valuable tool for exoplanet detection.

For deploying a deep learning model into production, it needs to be both accurate and compact to meet the latency and memory constraints. This usually results in a network that is deep (to ensure performance) and yet thin (to improve computational efficiency). In this paper, we propose an efficient method to train a deep thin network with a theoretic guarantee. Our method is motivated by model compression. It consists of three stages. In the first stage, we sufficiently widen the deep thin network and train it until convergence. In the second stage, we use this well-trained deep wide network to warm up (or initialize) the original deep thin network. This is achieved by letting the thin network imitate the immediate outputs of the wide network from layer to layer. In the last stage, we further fine tune this well initialized deep thin network. The theoretical guarantee is established by using mean field analysis, which shows the advantage of layerwise imitation over traditional training deep thin networks from scratch by backpropagation. We also conduct large-scale empirical experiments to validate our approach. By training with our method, ResNet50 can outperform ResNet101, and BERT_BASE can be comparable with BERT_LARGE, where both the latter models are trained via the standard training procedures as in the literature.

Reinforcement learning is one of the core components in designing an artificial intelligent system emphasizing real-time response. Reinforcement learning influences the system to take actions within an arbitrary environment either having previous knowledge about the environment model or not. In this paper, we present a comprehensive study on Reinforcement Learning focusing on various dimensions including challenges, the recent development of different state-of-the-art techniques, and future directions. The fundamental objective of this paper is to provide a framework for the presentation of available methods of reinforcement learning that is informative enough and simple to follow for the new researchers and academics in this domain considering the latest concerns. First, we illustrated the core techniques of reinforcement learning in an easily understandable and comparable way. Finally, we analyzed and depicted the recent developments in reinforcement learning approaches. My analysis pointed out that most of the models focused on tuning policy values rather than tuning other things in a particular state of reasoning.

北京阿比特科技有限公司