亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Modern society is diverse, multicultural, and multifaceted. Because of these characteristics, we are currently observing an increase in the debates about equity, diversity, and inclusion in different areas, especially because several groups of individuals are underrepresented in many environments. In computer science and software engineering, it seems counter-intuitive that these areas, which are responsible for creating technological solutions and systems for billions of users around the world, do not reflect the diversity of the society to which it serves. In trying to solve this diversity crisis in the software industry, researchers started to investigate strategies that can be applied to increase diversity and improve inclusion in academia and the software industry. However, the lack of diversity in computer science and related courses, including software engineering, is still a problem, in particular when some specific groups are considered. LGBTQIA+ students, for instance, face several challenges to fit into technology courses, even though most students in universities right now belong to Generation Z, which is described as open-minded to aspects of gender and sexuality. In this study, we aimed to discuss the state-of-art of publications about the inclusion of LGBTQIA+ students in computer science education. Using a mapping study, we identified eight studies published in the past six years that focused on this public. We present strategies developed to adapt curricula and lectures to be more inclusive to LGBTQIA+ students and discuss challenges and opportunities for future research

相關內容

Recent work has shown that viewing allocators as black-box 2DBP solvers bears meaning. For instance, there exists a 2DBP-based fragmentation metric which often correlates monotonically with maximum resident set size (RSS). Given the field's indeterminacy with respect to fragmentation definitions, as well as the immense value of physical memory savings, we are motivated to set allocator-generated placements against their 2DBP-devised, makespan-optimizing counterparts. Of course, allocators must operate online while 2DBP algorithms work on complete request traces; but since both sides optimize criteria related to minimizing memory wastage, the idea of studying their relationship preserves its intellectual--and practical--interest. Unfortunately no implementations of 2DBP algorithms for DSA are available. This paper presents a first, though partial, implementation of the state-of-the-art. We validate its functionality by comparing its outputs' makespan to the theoretical upper bound provided by the original authors. Along the way, we identify and document key details to assist analogous future efforts. Our experiments comprise 4 modern allocators and 8 real application workloads. We make several notable observations on our empirical evidence: in terms of makespan, allocators outperform Robson's worst-case lower bound $93.75\%$ of the time. In $87.5\%$ of cases, GNU's \texttt{malloc} implementation demonstrates equivalent or superior performance to the 2DBP state-of-the-art, despite the second operating offline. Most surprisingly, the 2DBP algorithm proves competent in terms of fragmentation, producing up to $2.46$x better solutions. Future research can leverage such insights towards memory-targeting optimizations.

This paper explores the potential of artificial intelligence (AI) in higher education, specifically its capacity to replace or assist human teachers. By reviewing relevant literature and analysing survey data from students and teachers, the study provides a comprehensive perspective on the future role of educators in the face of advancing AI technologies. Findings suggest that although some believe AI may eventually replace teachers, the majority of participants argue that human teachers possess unique qualities, such as critical thinking, creativity, and emotions, which make them irreplaceable. The study also emphasizes the importance of social-emotional competencies developed through human interactions, which AI technologies cannot currently replicate. The research proposes that teachers can effectively integrate AI to enhance teaching and learning without viewing it as a replacement. To do so, teachers need to understand how AI can work well with teachers and students while avoiding potential pitfalls, develop AI literacy, and address practical issues such as data protection, ethics, and privacy. The study reveals that students value and respect human teachers, even as AI becomes more prevalent in education. The study also introduces a roadmap for students, teachers, and universities. This roadmap serves as a valuable guide for refining teaching skills, fostering personal connections, and designing curriculums that effectively balance the strengths of human educators with AI technologies. The future of education lies in the synergy between human teachers and AI. By understanding and refining their unique qualities, teachers, students, and universities can effectively navigate the integration of AI, ensuring a well-rounded and impactful learning experience.

Webpages change over time, and web archives hold copies of historical versions of webpages. Users of web archives, such as journalists, want to find and view changes on webpages over time. However, the current search interfaces for web archives do not support this task. For the web archives that include a full-text search feature, multiple versions of the same webpage that match the search query are shown individually without enumerating changes, or are grouped together in a way that hides changes. We present a change text search engine that allows users to find changes in webpages. We describe the implementation of the search engine backend and frontend, including a tool that allows users to view the changes between two webpage versions in context as an animation. We evaluate the search engine with U.S. federal environmental webpages that changed between 2016 and 2020. The change text search results page can clearly show when terms and phrases were added or removed from webpages. The inverted index can also be queried to identify salient and frequently deleted terms in a corpus.

In this 4-page manuscript we discuss the problem of long-term AI Safety from a Software Engineering (SE) research viewpoint. We briefly summarize long-term AI Safety, and the challenge of avoiding harms from AI as systems meet or exceed human SE capabilities, including software engineering capabilities (and approach AGI / "HLMI"). We perform a quantified literature review suggesting that AI Safety discussions are not common at SE venues. We make conjectures about how software might change with rising capabilities, and categorize "subproblems" which fit into traditional SE areas, proposing how work on similar problems might improve the future of AI and SE.

ChatGPT is a natural language processing tool that can engage in human-like conversations and generate coherent and contextually relevant responses to various prompts. ChatGPT is capable of understanding natural text that is input by a user and generating appropriate responses in various forms. This tool represents a major step in how humans are interacting with technology. This paper specifically focuses on how ChatGPT is revolutionizing the realm of engineering education and the relationship between technology, students, and faculty and staff. Because this tool is quickly changing and improving with the potential for even greater future capability, it is a critical time to collect pertinent data. A survey was created to measure the effects of ChatGPT on students, faculty, and staff. This survey is shared as a Texas A&M University technical report to allow other universities and entities to use this survey and measure the effects elsewhere.

While Reinforcement Learning (RL) achieves tremendous success in sequential decision-making problems of many domains, it still faces key challenges of data inefficiency and the lack of interpretability. Interestingly, many researchers have leveraged insights from the causality literature recently, bringing forth flourishing works to unify the merits of causality and address well the challenges from RL. As such, it is of great necessity and significance to collate these Causal Reinforcement Learning (CRL) works, offer a review of CRL methods, and investigate the potential functionality from causality toward RL. In particular, we divide existing CRL approaches into two categories according to whether their causality-based information is given in advance or not. We further analyze each category in terms of the formalization of different models, ranging from the Markov Decision Process (MDP), Partially Observed Markov Decision Process (POMDP), Multi-Arm Bandits (MAB), and Dynamic Treatment Regime (DTR). Moreover, we summarize the evaluation matrices and open sources while we discuss emerging applications, along with promising prospects for the future development of CRL.

Understanding causality helps to structure interventions to achieve specific goals and enables predictions under interventions. With the growing importance of learning causal relationships, causal discovery tasks have transitioned from using traditional methods to infer potential causal structures from observational data to the field of pattern recognition involved in deep learning. The rapid accumulation of massive data promotes the emergence of causal search methods with brilliant scalability. Existing summaries of causal discovery methods mainly focus on traditional methods based on constraints, scores and FCMs, there is a lack of perfect sorting and elaboration for deep learning-based methods, also lacking some considers and exploration of causal discovery methods from the perspective of variable paradigms. Therefore, we divide the possible causal discovery tasks into three types according to the variable paradigm and give the definitions of the three tasks respectively, define and instantiate the relevant datasets for each task and the final causal model constructed at the same time, then reviews the main existing causal discovery methods for different tasks. Finally, we propose some roadmaps from different perspectives for the current research gaps in the field of causal discovery and point out future research directions.

Few-shot learning (FSL) has emerged as an effective learning method and shows great potential. Despite the recent creative works in tackling FSL tasks, learning valid information rapidly from just a few or even zero samples still remains a serious challenge. In this context, we extensively investigated 200+ latest papers on FSL published in the past three years, aiming to present a timely and comprehensive overview of the most recent advances in FSL along with impartial comparisons of the strengths and weaknesses of the existing works. For the sake of avoiding conceptual confusion, we first elaborate and compare a set of similar concepts including few-shot learning, transfer learning, and meta-learning. Furthermore, we propose a novel taxonomy to classify the existing work according to the level of abstraction of knowledge in accordance with the challenges of FSL. To enrich this survey, in each subsection we provide in-depth analysis and insightful discussion about recent advances on these topics. Moreover, taking computer vision as an example, we highlight the important application of FSL, covering various research hotspots. Finally, we conclude the survey with unique insights into the technology evolution trends together with potential future research opportunities in the hope of providing guidance to follow-up research.

AI in finance broadly refers to the applications of AI techniques in financial businesses. This area has been lasting for decades with both classic and modern AI techniques applied to increasingly broader areas of finance, economy and society. In contrast to either discussing the problems, aspects and opportunities of finance that have benefited from specific AI techniques and in particular some new-generation AI and data science (AIDS) areas or reviewing the progress of applying specific techniques to resolving certain financial problems, this review offers a comprehensive and dense roadmap of the overwhelming challenges, techniques and opportunities of AI research in finance over the past decades. The landscapes and challenges of financial businesses and data are firstly outlined, followed by a comprehensive categorization and a dense overview of the decades of AI research in finance. We then structure and illustrate the data-driven analytics and learning of financial businesses and data. The comparison, criticism and discussion of classic vs. modern AI techniques for finance are followed. Lastly, open issues and opportunities address future AI-empowered finance and finance-motivated AI research.

Generative adversarial networks (GANs) have been extensively studied in the past few years. Arguably their most significant impact has been in the area of computer vision where great advances have been made in challenges such as plausible image generation, image-to-image translation, facial attribute manipulation and similar domains. Despite the significant successes achieved to date, applying GANs to real-world problems still poses significant challenges, three of which we focus on here. These are: (1) the generation of high quality images, (2) diversity of image generation, and (3) stable training. Focusing on the degree to which popular GAN technologies have made progress against these challenges, we provide a detailed review of the state of the art in GAN-related research in the published scientific literature. We further structure this review through a convenient taxonomy we have adopted based on variations in GAN architectures and loss functions. While several reviews for GANs have been presented to date, none have considered the status of this field based on their progress towards addressing practical challenges relevant to computer vision. Accordingly, we review and critically discuss the most popular architecture-variant, and loss-variant GANs, for tackling these challenges. Our objective is to provide an overview as well as a critical analysis of the status of GAN research in terms of relevant progress towards important computer vision application requirements. As we do this we also discuss the most compelling applications in computer vision in which GANs have demonstrated considerable success along with some suggestions for future research directions. Code related to GAN-variants studied in this work is summarized on //github.com/sheqi/GAN_Review.

北京阿比特科技有限公司