This paper plans to develop an Equitable and Responsible AI framework with enabling techniques and algorithms for the Internet of Energy (IoE), in short, RAI4IoE. The energy sector is going through substantial changes fueled by two key drivers: building a zero-carbon energy sector and the digital transformation of the energy infrastructure. We expect to see the convergence of these two drivers resulting in the IoE, where renewable distributed energy resources (DERs), such as electric cars, storage batteries, wind turbines and photovoltaics (PV), can be connected and integrated for reliable energy distribution by leveraging advanced 5G-6G networks and AI technology. This allows DER owners as prosumers to participate in the energy market and derive economic incentives. DERs are inherently asset-driven and face equitable challenges (i.e., fair, diverse and inclusive). Without equitable access, privileged individuals, groups and organizations can participate and benefit at the cost of disadvantaged groups. The real-time management of DER resources not only brings out the equity problem to the IoE, it also collects highly sensitive location, time, activity dependent data, which requires to be handled responsibly (e.g., privacy, security and safety), for AI-enhanced predictions, optimization and prioritization services, and automated management of flexible resources. The vision of our project is to ensure equitable participation of the community members and responsible use of their data in IoE so that it could reap the benefits of advances in AI to provide safe, reliable and sustainable energy services.
We introduce TabRepo, a new dataset of tabular model evaluations and predictions. TabRepo contains the predictions and metrics of 1206 models evaluated on 200 regression and classification datasets. We illustrate the benefit of our datasets in multiple ways. First, we show that it allows to perform analysis such as comparing Hyperparameter Optimization against current AutoML systems while also considering ensembling at no cost by using precomputed model predictions. Second, we show that our dataset can be readily leveraged to perform transfer-learning. In particular, we show that applying standard transfer-learning techniques allows to outperform current state-of-the-art tabular systems in accuracy, runtime and latency.
This paper presents a comprehensive evaluation of the code generation capabilities of ChatGPT, a prominent large language model, compared to human programmers. A novel dataset of 131 code-generation prompts across 5 categories was curated to enable robust analysis. Code solutions were generated by both ChatGPT and humans for all prompts, resulting in 262 code samples. A meticulous manual assessment methodology prioritized evaluating correctness, comprehensibility, and security using 14 established code quality metrics. The key findings reveal ChatGPT's strengths in crafting concise, efficient code with advanced constructs, showcasing strengths in data analysis tasks (93.1% accuracy) but limitations in visual-graphical challenges. Comparative analysis with human code highlights ChatGPT's inclination towards modular design and superior error handling. Additionally, machine learning models effectively distinguished ChatGPT from human code with up to 88% accuracy, suggesting detectable coding style disparities. By providing profound insights into ChatGPT's code generation capabilities and limitations through quantitative metrics and qualitative analysis, this study makes valuable contributions toward advancing AI-based programming assistants. The curated dataset and methodology offer a robust foundation for future research in this nascent domain. All data and codes are available on //github.com/DSAatUSU/ChatGPT-promises-and-pitfalls.
This paper presents a novel split learning (SL) framework, referred to as SplitMAC, which reduces the latency of SL by leveraging simultaneous uplink transmission over multiple access channels. The key strategy is to divide devices into multiple groups and allow the devices within the same group to simultaneously transmit their smashed data and device-side models over the multiple access channels. The optimization problem of device grouping to minimize SL latency is formulated, and the benefit of device grouping in reducing the uplink latency of SL is theoretically derived. By examining a two-device grouping case, two asymptotically-optimal algorithms are devised for device grouping in low and high signal-to-noise ratio (SNR) scenarios, respectively, while providing proofs of their optimality. By merging these algorithms, a near-optimal device grouping algorithm is proposed to cover a wide range of SNR. Simulation results demonstrate that our SL framework with the proposed device grouping algorithm is superior to existing SL frameworks in reducing SL latency.
The main contribution of this paper is a new improved variant of the laser method for designing matrix multiplication algorithms. Building upon the recent techniques of [Duan, Wu, Zhou, FOCS 2023], the new method introduces several new ingredients that not only yield an improved bound on the matrix multiplication exponent $\omega$, but also improve the known bounds on rectangular matrix multiplication by [Le Gall and Urrutia, SODA 2018]. In particular, the new bound on $\omega$ is $\omega\le 2.371552$ (improved from $\omega\le 2.371866$). For the dual matrix multiplication exponent $\alpha$ defined as the largest $\alpha$ for which $\omega(1,\alpha,1)=2$, we obtain the improvement $\alpha \ge 0.321334$ (improved from $\alpha \ge 0.31389$). Similar improvements are obtained for various other exponents for multiplying rectangular matrices.
We present Multi-EuP, a new multilingual benchmark dataset, comprising 22K multi-lingual documents collected from the European Parliament, spanning 24 languages. This dataset is designed to investigate fairness in a multilingual information retrieval (IR) context to analyze both language and demographic bias in a ranking context. It boasts an authentic multilingual corpus, featuring topics translated into all 24 languages, as well as cross-lingual relevance judgments. Furthermore, it offers rich demographic information associated with its documents, facilitating the study of demographic bias. We report the effectiveness of Multi-EuP for benchmarking both monolingual and multilingual IR. We also conduct a preliminary experiment on language bias caused by the choice of tokenization strategy.
We propose a framework for expressing and analyzing the Quality of Service (QoS) of message-passing systems using a choreographic model that consists of g-choreographies and Communicating Finite State machines (CFSMs). The following are our three main contributions: (I) an extension of CFSMs with non-functional contracts to specify quantitative constraints of local computations, (II) a dynamic temporal logic capable of expressing QoS, properties of systems relative to the g-choreography that specifies the communication protocol, (III) the semi-decidability of our logic which enables a bounded model-checking approach to verify QoS property of communicating systems.
This paper explores the development of UniFolding, a sample-efficient, scalable, and generalizable robotic system for unfolding and folding various garments. UniFolding employs the proposed UFONet neural network to integrate unfolding and folding decisions into a single policy model that is adaptable to different garment types and states. The design of UniFolding is based on a garment's partial point cloud, which aids in generalization and reduces sensitivity to variations in texture and shape. The training pipeline prioritizes low-cost, sample-efficient data collection. Training data is collected via a human-centric process with offline and online stages. The offline stage involves human unfolding and folding actions via Virtual Reality, while the online stage utilizes human-in-the-loop learning to fine-tune the model in a real-world setting. The system is tested on two garment types: long-sleeve and short-sleeve shirts. Performance is evaluated on 20 shirts with significant variations in textures, shapes, and materials. More experiments and videos can be found in the supplementary materials and on the website: //unifolding.robotflow.ai
This paper analyzes the design choices of face detection architecture that improve efficiency of computation cost and accuracy. Specifically, we re-examine the effectiveness of the standard convolutional block as a lightweight backbone architecture for face detection. Unlike the current tendency of lightweight architecture design, which heavily utilizes depthwise separable convolution layers, we show that heavily channel-pruned standard convolution layers can achieve better accuracy and inference speed when using a similar parameter size. This observation is supported by the analyses concerning the characteristics of the target data domain, faces. Based on our observation, we propose to employ ResNet with a highly reduced channel, which surprisingly allows high efficiency compared to other mobile-friendly networks (e.g., MobileNetV1, V2, V3). From the extensive experiments, we show that the proposed backbone can replace that of the state-of-the-art face detector with a faster inference speed. Also, we further propose a new feature aggregation method to maximize the detection performance. Our proposed detector EResFD obtained 80.4% mAP on WIDER FACE Hard subset which only takes 37.7 ms for VGA image inference on CPU. Code is available at //github.com/clovaai/EResFD.
Knowledge graph embedding (KGE) is a increasingly popular technique that aims to represent entities and relations of knowledge graphs into low-dimensional semantic spaces for a wide spectrum of applications such as link prediction, knowledge reasoning and knowledge completion. In this paper, we provide a systematic review of existing KGE techniques based on representation spaces. Particularly, we build a fine-grained classification to categorise the models based on three mathematical perspectives of the representation spaces: (1) Algebraic perspective, (2) Geometric perspective, and (3) Analytical perspective. We introduce the rigorous definitions of fundamental mathematical spaces before diving into KGE models and their mathematical properties. We further discuss different KGE methods over the three categories, as well as summarise how spatial advantages work over different embedding needs. By collating the experimental results from downstream tasks, we also explore the advantages of mathematical space in different scenarios and the reasons behind them. We further state some promising research directions from a representation space perspective, with which we hope to inspire researchers to design their KGE models as well as their related applications with more consideration of their mathematical space properties.
This paper presents SimCLR: a simple framework for contrastive learning of visual representations. We simplify recently proposed contrastive self-supervised learning algorithms without requiring specialized architectures or a memory bank. In order to understand what enables the contrastive prediction tasks to learn useful representations, we systematically study the major components of our framework. We show that (1) composition of data augmentations plays a critical role in defining effective predictive tasks, (2) introducing a learnable nonlinear transformation between the representation and the contrastive loss substantially improves the quality of the learned representations, and (3) contrastive learning benefits from larger batch sizes and more training steps compared to supervised learning. By combining these findings, we are able to considerably outperform previous methods for self-supervised and semi-supervised learning on ImageNet. A linear classifier trained on self-supervised representations learned by SimCLR achieves 76.5% top-1 accuracy, which is a 7% relative improvement over previous state-of-the-art, matching the performance of a supervised ResNet-50. When fine-tuned on only 1% of the labels, we achieve 85.8% top-5 accuracy, outperforming AlexNet with 100X fewer labels.