亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We present the Recurrent Interface Network (RIN), a neural net architecture that allocates computation adaptively to the input according to the distribution of information, allowing it to scale to iterative generation of high-dimensional data. Hidden units of RINs are partitioned into the interface, which is locally connected to inputs, and latents, which are decoupled from inputs and can exchange information globally. The RIN block selectively reads from the interface into latents for high-capacity processing, with incremental updates written back to the interface. Stacking multiple blocks enables effective routing across local and global levels. While routing adds overhead, the cost can be amortized in recurrent computation settings where inputs change gradually while more global context persists, such as iterative generation using diffusion models. To this end, we propose a latent self-conditioning technique that "warm-starts" the latents at each iteration of the generation process. When applied to diffusion models operating directly on pixels, RINs yield state-of-the-art image and video generation without cascades or guidance, while being domain-agnostic and up to 10$\times$ more efficient compared to specialized 2D and 3D U-Nets.

相關內容

In this paper, we propose energy-based sample adaptation at test time for domain generalization. Where previous works adapt their models to target domains, we adapt the unseen target samples to source-trained models. To this end, we design a discriminative energy-based model, which is trained on source domains to jointly model the conditional distribution for classification and data distribution for sample adaptation. The model is optimized to simultaneously learn a classifier and an energy function. To adapt target samples to source distributions, we iteratively update the samples by energy minimization with stochastic gradient Langevin dynamics. Moreover, to preserve the categorical information in the sample during adaptation, we introduce a categorical latent variable into the energy-based model. The latent variable is learned from the original sample before adaptation by variational inference and fixed as a condition to guide the sample update. Experiments on six benchmarks for classification of images and microblog threads demonstrate the effectiveness of our proposal.

Fine-tuning a language model on a new domain is standard practice for domain adaptation. However, it can be infeasible when it comes to modern large-scale language models such as GPT-3, which can only be accessed through APIs, making it difficult to access the internal parameters of the model. In this paper, we propose $k$NN-Adapter, a method to effectively adapt these black-box large language models (LLMs) to a new domain. The $k$NN-Adapter builds on top of the retrieval-augmented language model, and adaptively learns to interpolate the output of the language model with retrieval results from a datastore consisting of the target domain data. Our experiments on four different domains demonstrate that $k$NN-Adapter significantly improves perplexity, and works particularly well in settings with limited access to LLMs. Additionally, we show that $k$NN-Adapter is more effective than fine-tuning when the amount of training data is limited. We also release a dataset to encourage further study.

Some of today's most significant challenges in urban environments concern individual mobility and rapid parcel delivery. With the surge of e-commerce and the ever-increasing volume of goods to be handled, new logistic solutions are in high demand. The share-a-ride problem (SARP) was proposed as one such solution, combining people and parcel transportation in taxis. This is an NP-hard problem and thus obtaining optimal solutions can be computationally costly. In this paper, we work with a variation of SARP for ride-hailing systems, which can be formulated as a multi-depot open generalised vehicle routing problem with time windows. We present and solve a mixed-integer linear programming (MILP) formulation for this problem that bundles requests together, and we compare its results to a previously proposed two-stage method. The latter solves the so-called freight insertion problem (FIP) in the second stage, for which we consider two versions, and the problem consists of inserting parcels into predefined passenger routes obtained in the first stage. We tested the methods in three sets of instances. The developed bundle-based approach outperformed both FIP versions in solution quality and in the service of parcels. Our method also compares favourably when it comes to reducing the amount of deadheading distance.

Unit tests play a key role in ensuring the correctness of software. However, manually creating unit tests is a laborious task, motivating the need for automation. This paper presents TestPilot, an adaptive test generation technique that leverages Large Language Models (LLMs). TestPilot uses Codex, an off-the-shelf LLM, to automatically generate unit tests for a given program without requiring additional training or few-shot learning on examples of existing tests. In our approach, Codex is provided with prompts that include the signature and implementation of a function under test, along with usage examples extracted from documentation. If a generated test fails, TestPilot's adaptive component attempts to generate a new test that fixes the problem by re-prompting the model with the failing test and error message. We created an implementation of TestPilot for JavaScript and evaluated it on 25 npm packages with a total of 1,684 API functions to generate tests for. Our results show that the generated tests achieve up to 93.1% statement coverage (median 68.2%). Moreover, on average, 58.5% of the generated tests contain at least one assertion that exercises functionality from the package under test. Our experiments with excluding parts of the information included in the prompts show that all components contribute towards the generation of effective test suites. Finally, we find that TestPilot does not generate memorized tests: 92.7% of our generated tests have $\leq$ 50% similarity with existing tests (as measured by normalized edit distance), with none of them being exact copies.

Domain adaptive semantic segmentation attempts to make satisfactory dense predictions on an unlabeled target domain by utilizing the supervised model trained on a labeled source domain. In this work, we propose Semantic-Guided Pixel Contrast (SePiCo), a novel one-stage adaptation framework that highlights the semantic concepts of individual pixels to promote learning of class-discriminative and class-balanced pixel representations across domains, eventually boosting the performance of self-training methods. Specifically, to explore proper semantic concepts, we first investigate a centroid-aware pixel contrast that employs the category centroids of the entire source domain or a single source image to guide the learning of discriminative features. Considering the possible lack of category diversity in semantic concepts, we then blaze a trail of distributional perspective to involve a sufficient quantity of instances, namely distribution-aware pixel contrast, in which we approximate the true distribution of each semantic category from the statistics of labeled source data. Moreover, such an optimization objective can derive a closed-form upper bound by implicitly involving an infinite number of (dis)similar pairs, making it computationally efficient. Extensive experiments show that SePiCo not only helps stabilize training but also yields discriminative representations, making significant progress on both synthetic-to-real and daytime-to-nighttime adaptation scenarios.

Ensuring that analyses performed on a dataset are representative of the entire population is one of the central problems in statistics. Most classical techniques assume that the dataset is independent of the analyst's query and break down in the common setting where a dataset is reused for multiple, adaptively chosen, queries. This problem of \emph{adaptive data analysis} was formalized in the seminal works of Dwork et al. (STOC, 2015) and Hardt and Ullman (FOCS, 2014). We identify a remarkably simple set of assumptions under which the queries will continue to be representative even when chosen adaptively: The only requirements are that each query takes as input a random subsample and outputs few bits. This result shows that the noise inherent in subsampling is sufficient to guarantee that query responses generalize. The simplicity of this subsampling-based framework allows it to model a variety of real-world scenarios not covered by prior work. In addition to its simplicity, we demonstrate the utility of this framework by designing mechanisms for two foundational tasks, statistical queries and median finding. In particular, our mechanism for answering the broadly applicable class of statistical queries is both extremely simple and state of the art in many parameter regimes.

Over the past few years, the rapid development of deep learning technologies for computer vision has greatly promoted the performance of medical image segmentation (MedISeg). However, the recent MedISeg publications usually focus on presentations of the major contributions (e.g., network architectures, training strategies, and loss functions) while unwittingly ignoring some marginal implementation details (also known as "tricks"), leading to a potential problem of the unfair experimental result comparisons. In this paper, we collect a series of MedISeg tricks for different model implementation phases (i.e., pre-training model, data pre-processing, data augmentation, model implementation, model inference, and result post-processing), and experimentally explore the effectiveness of these tricks on the consistent baseline models. Compared to paper-driven surveys that only blandly focus on the advantages and limitation analyses of segmentation models, our work provides a large number of solid experiments and is more technically operable. With the extensive experimental results on both the representative 2D and 3D medical image datasets, we explicitly clarify the effect of these tricks. Moreover, based on the surveyed tricks, we also open-sourced a strong MedISeg repository, where each of its components has the advantage of plug-and-play. We believe that this milestone work not only completes a comprehensive and complementary survey of the state-of-the-art MedISeg approaches, but also offers a practical guide for addressing the future medical image processing challenges including but not limited to small dataset learning, class imbalance learning, multi-modality learning, and domain adaptation. The code has been released at: //github.com/hust-linyi/MedISeg

Human-centric perception plays a vital role in vision and graphics. But their data annotations are prohibitively expensive. Therefore, it is desirable to have a versatile pre-train model that serves as a foundation for data-efficient downstream tasks transfer. To this end, we propose the Human-Centric Multi-Modal Contrastive Learning framework HCMoCo that leverages the multi-modal nature of human data (e.g. RGB, depth, 2D keypoints) for effective representation learning. The objective comes with two main challenges: dense pre-train for multi-modality data, efficient usage of sparse human priors. To tackle the challenges, we design the novel Dense Intra-sample Contrastive Learning and Sparse Structure-aware Contrastive Learning targets by hierarchically learning a modal-invariant latent space featured with continuous and ordinal feature distribution and structure-aware semantic consistency. HCMoCo provides pre-train for different modalities by combining heterogeneous datasets, which allows efficient usage of existing task-specific human data. Extensive experiments on four downstream tasks of different modalities demonstrate the effectiveness of HCMoCo, especially under data-efficient settings (7.16% and 12% improvement on DensePose Estimation and Human Parsing). Moreover, we demonstrate the versatility of HCMoCo by exploring cross-modality supervision and missing-modality inference, validating its strong ability in cross-modal association and reasoning.

Unsupervised domain adaptation has recently emerged as an effective paradigm for generalizing deep neural networks to new target domains. However, there is still enormous potential to be tapped to reach the fully supervised performance. In this paper, we present a novel active learning strategy to assist knowledge transfer in the target domain, dubbed active domain adaptation. We start from an observation that energy-based models exhibit free energy biases when training (source) and test (target) data come from different distributions. Inspired by this inherent mechanism, we empirically reveal that a simple yet efficient energy-based sampling strategy sheds light on selecting the most valuable target samples than existing approaches requiring particular architectures or computation of the distances. Our algorithm, Energy-based Active Domain Adaptation (EADA), queries groups of targe data that incorporate both domain characteristic and instance uncertainty into every selection round. Meanwhile, by aligning the free energy of target data compact around the source domain via a regularization term, domain gap can be implicitly diminished. Through extensive experiments, we show that EADA surpasses state-of-the-art methods on well-known challenging benchmarks with substantial improvements, making it a useful option in the open world. Code is available at //github.com/BIT-DA/EADA.

Deep Convolutional Neural Networks have pushed the state-of-the art for semantic segmentation provided that a large amount of images together with pixel-wise annotations is available. Data collection is expensive and a solution to alleviate it is to use transfer learning. This reduces the amount of annotated data required for the network training but it does not get rid of this heavy processing step. We propose a method of transfer learning without annotations on the target task for datasets with redundant content and distinct pixel distributions. Our method takes advantage of the approximate content alignment of the images between two datasets when the approximation error prevents the reuse of annotation from one dataset to another. Given the annotations for only one dataset, we train a first network in a supervised manner. This network autonomously learns to generate deep data representations relevant to the semantic segmentation. Then the images in the new dataset, we train a new network to generate a deep data representation that matches the one from the first network on the previous dataset. The training consists in a regression between feature maps and does not require any annotations on the new dataset. We show that this method reaches performances similar to a classic transfer learning on the PASCAL VOC dataset with synthetic transformations.

北京阿比特科技有限公司