Wireless applications that use high-reliability low-latency links depend critically on the capability of the system to predict link quality. This dependence is especially acute at the high carrier frequencies used by mmWave and THz systems, where the links are susceptible to blockages. Predicting blockages with high reliability requires a large number of data samples to train effective machine learning modules. With the aim of mitigating data requirements, we introduce a framework based on meta-learning, whereby data from distinct deployments are leveraged to optimize a shared initialization that decreases the data set size necessary for any new deployment. Predictors of two different events are studied: (1) at least one blockage occurs in a time window, and (2) the link is blocked for the entire time window. The results show that an RNN-based predictor trained using meta-learning is able to predict blockages after observing fewer samples than predictors trained using standard methods.
We study the classification of animal behavior using accelerometry data through various recurrent neural network (RNN) models. We evaluate the classification performance and complexity of the considered models, which feature long short-time memory (LSTM) or gated recurrent unit (GRU) architectures with varying depths and widths, using four datasets acquired from cattle via collar or ear tags. We also include two state-of-the-art convolutional neural network (CNN)-based time-series classification models in the evaluations. The results show that the RNN-based models can achieve similar or higher classification accuracy compared with the CNN-based models while having less computational and memory requirements. We also observe that the models with GRU architecture generally outperform the ones with LSTM architecture in terms of classification accuracy despite being less complex. A single-layer uni-directional GRU model with 64 hidden units appears to offer a good balance between accuracy and complexity making it suitable for implementation on edge/embedded devices.
CTR prediction, which aims to estimate the probability that a user will click an item, plays a crucial role in online advertising and recommender system. Feature interaction modeling based and user interest mining based methods are the two kinds of most popular techniques that have been extensively explored for many years and have made great progress for CTR prediction. However, (1) feature interaction based methods which rely heavily on the co-occurrence of different features, may suffer from the feature sparsity problem (i.e., many features appear few times); (2) user interest mining based methods which need rich user behaviors to obtain user's diverse interests, are easy to encounter the behavior sparsity problem (i.e., many users have very short behavior sequences). To solve these problems, we propose a novel module named Dual Graph enhanced Embedding, which is compatible with various CTR prediction models to alleviate these two problems. We further propose a Dual Graph enhanced Embedding Neural Network (DG-ENN) for CTR prediction. Dual Graph enhanced Embedding exploits the strengths of graph representation with two carefully designed learning strategies (divide-and-conquer, curriculum-learning-inspired organized learning) to refine the embedding. We conduct comprehensive experiments on three real-world industrial datasets. The experimental results show that our proposed DG-ENN significantly outperforms state-of-the-art CTR prediction models. Moreover, when applying to state-of-the-art CTR prediction models, Dual graph enhanced embedding always obtains better performance. Further case studies prove that our proposed dual graph enhanced embedding could alleviate the feature sparsity and behavior sparsity problems. Our framework will be open-source based on MindSpore in the near future.
Graph convolution networks (GCN) are increasingly popular in many applications, yet remain notoriously hard to train over large graph datasets. They need to compute node representations recursively from their neighbors. Current GCN training algorithms suffer from either high computational costs that grow exponentially with the number of layers, or high memory usage for loading the entire graph and node embeddings. In this paper, we propose a novel efficient layer-wise training framework for GCN (L-GCN), that disentangles feature aggregation and feature transformation during training, hence greatly reducing time and memory complexities. We present theoretical analysis for L-GCN under the graph isomorphism framework, that L-GCN leads to as powerful GCNs as the more costly conventional training algorithm does, under mild conditions. We further propose L^2-GCN, which learns a controller for each layer that can automatically adjust the training epochs per layer in L-GCN. Experiments show that L-GCN is faster than state-of-the-arts by at least an order of magnitude, with a consistent of memory usage not dependent on dataset size, while maintaining comparable prediction performance. With the learned controller, L^2-GCN can further cut the training time in half. Our codes are available at //github.com/Shen-Lab/L2-GCN.
We consider the task of few shot link prediction on graphs. The goal is to learn from a distribution over graphs so that a model is able to quickly infer missing edges in a new graph after a small amount of training. We show that current link prediction methods are generally ill-equipped to handle this task. They cannot effectively transfer learned knowledge from one graph to another and are unable to effectively learn from sparse samples of edges. To address this challenge, we introduce a new gradient-based meta learning framework, Meta-Graph. Our framework leverages higher-order gradients along with a learned graph signature function that conditionally generates a graph neural network initialization. Using a novel set of few shot link prediction benchmarks, we show that Meta-Graph can learn to quickly adapt to a new graph using only a small sample of true edges, enabling not only fast adaptation but also improved results at convergence.
Click-through rate (CTR) prediction is an essential task in web applications such as online advertising and recommender systems, whose features are usually in multi-field form. The key of this task is to model feature interactions among different feature fields. Recently proposed deep learning based models follow a general paradigm: raw sparse input multi-filed features are first mapped into dense field embedding vectors, and then simply concatenated together to feed into deep neural networks (DNN) or other specifically designed networks to learn high-order feature interactions. However, the simple \emph{unstructured combination} of feature fields will inevitably limit the capability to model sophisticated interactions among different fields in a sufficiently flexible and explicit fashion. In this work, we propose to represent the multi-field features in a graph structure intuitively, where each node corresponds to a feature field and different fields can interact through edges. The task of modeling feature interactions can be thus converted to modeling node interactions on the corresponding graph. To this end, we design a novel model Feature Interaction Graph Neural Networks (Fi-GNN). Taking advantage of the strong representative power of graphs, our proposed model can not only model sophisticated feature interactions in a flexible and explicit fashion, but also provide good model explanations for CTR prediction. Experimental results on two real-world datasets show its superiority over the state-of-the-arts.
Meta-learning extracts the common knowledge acquired from learning different tasks and uses it for unseen tasks. It demonstrates a clear advantage on tasks that have insufficient training data, e.g., few-shot learning. In most meta-learning methods, tasks are implicitly related via the shared model or optimizer. In this paper, we show that a meta-learner that explicitly relates tasks on a graph describing the relations of their output dimensions (e.g., classes) can significantly improve the performance of few-shot learning. This type of graph is usually free or cheap to obtain but has rarely been explored in previous works. We study the prototype based few-shot classification, in which a prototype is generated for each class, such that the nearest neighbor search between the prototypes produces an accurate classification. We introduce "Gated Propagation Network (GPN)", which learns to propagate messages between prototypes of different classes on the graph, so that learning the prototype of each class benefits from the data of other related classes. In GPN, an attention mechanism is used for the aggregation of messages from neighboring classes, and a gate is deployed to choose between the aggregated messages and the message from the class itself. GPN is trained on a sequence of tasks from many-shot to few-shot generated by subgraph sampling. During training, it is able to reuse and update previously achieved prototypes from the memory in a life-long learning cycle. In experiments, we change the training-test discrepancy and test task generation settings for thorough evaluations. GPN outperforms recent meta-learning methods on two benchmark datasets in all studied cases.
Graph autoencoders (AE) and variational autoencoders (VAE) recently emerged as powerful node embedding methods. In particular, graph AE and VAE were successfully leveraged to tackle the challenging link prediction problem, aiming at figuring out whether some pairs of nodes from a graph are connected by unobserved edges. However, these models focus on undirected graphs and therefore ignore the potential direction of the link, which is limiting for numerous real-life applications. In this paper, we extend the graph AE and VAE frameworks to address link prediction in directed graphs. We present a new gravity-inspired decoder scheme that can effectively reconstruct directed graphs from a node embedding. We empirically evaluate our method on three different directed link prediction tasks, for which standard graph AE and VAE perform poorly. We achieve competitive results on three real-world graphs, outperforming several popular baselines.
Knowledge graph embedding aims to learn distributed representations for entities and relations, and is proven to be effective in many applications. Crossover interactions --- bi-directional effects between entities and relations --- help select related information when predicting a new triple, but haven't been formally discussed before. In this paper, we propose CrossE, a novel knowledge graph embedding which explicitly simulates crossover interactions. It not only learns one general embedding for each entity and relation as most previous methods do, but also generates multiple triple specific embeddings for both of them, named interaction embeddings. We evaluate embeddings on typical link prediction tasks and find that CrossE achieves state-of-the-art results on complex and more challenging datasets. Furthermore, we evaluate embeddings from a new perspective --- giving explanations for predicted triples, which is important for real applications. In this work, an explanation for a triple is regarded as a reliable closed-path between the head and the tail entity. Compared to other baselines, we show experimentally that CrossE, benefiting from interaction embeddings, is more capable of generating reliable explanations to support its predictions.
Traditional methods for link prediction can be categorized into three main types: graph structure feature-based, latent feature-based, and explicit feature-based. Graph structure feature methods leverage some handcrafted node proximity scores, e.g., common neighbors, to estimate the likelihood of links. Latent feature methods rely on factorizing networks' matrix representations to learn an embedding for each node. Explicit feature methods train a machine learning model on two nodes' explicit attributes. Each of the three types of methods has its unique merits. In this paper, we propose SEAL (learning from Subgraphs, Embeddings, and Attributes for Link prediction), a new framework for link prediction which combines the power of all the three types into a single graph neural network (GNN). GNN is a new type of neural network which directly accepts graphs as input and outputs their labels. In SEAL, the input to the GNN is a local subgraph around each target link. We prove theoretically that our local subgraphs also reserve a great deal of high-order graph structure features related to link existence. Another key feature is that our GNN can naturally incorporate latent features and explicit features. It is achieved by concatenating node embeddings (latent features) and node attributes (explicit features) in the node information matrix for each subgraph, thus combining the three types of features to enhance GNN learning. Through extensive experiments, SEAL shows unprecedentedly strong performance against a wide range of baseline methods, including various link prediction heuristics and network embedding methods.
Networks provide a powerful formalism for modeling complex systems, by representing the underlying set of pairwise interactions. But much of the structure within these systems involves interactions that take place among more than two nodes at once; for example, communication within a group rather than person-to-person, collaboration among a team rather than a pair of co-authors, or biological interaction between a set of molecules rather than just two. We refer to these type of simultaneous interactions on sets of more than two nodes as higher-order interactions; they are ubiquitous, but the empirical study of them has lacked a general framework for evaluating higher-order models. Here we introduce such a framework, based on link prediction, a fundamental problem in network analysis. The traditional link prediction problem seeks to predict the appearance of new links in a network, and here we adapt it to predict which (larger) sets of elements will have future interactions. We study the temporal evolution of 19 datasets from a variety of domains, and use our higher-order formulation of link prediction to assess the types of structural features that are most predictive of new multi-way interactions. Among our results, we find that different domains vary considerably in their distribution of higher-order structural parameters, and that the higher-order link prediction problem exhibits some fundamental differences from traditional pairwise link prediction, with a greater role for local rather than long-range information in predicting the appearance of new interactions.