In large-scale storehouses, precise instance masks are crucial for robotic bin picking but are challenging to obtain. Existing instance segmentation methods typically rely on a tedious process of scene collection, mask annotation, and network fine-tuning for every single Stock Keeping Unit (SKU). This paper presents SKU-Patch, a new patch-guided instance segmentation solution, leveraging only a few image patches for each incoming new SKU to predict accurate and robust masks, without tedious manual effort and model re-training. Technical-wise, we design a novel transformer-based network with (i) a patch-image correlation encoder to capture multi-level image features calibrated by patch information and (ii) a patch-aware transformer decoder with parallel task heads to generate instance masks. Extensive experiments on four storehouse benchmarks manifest that SKU-Patch is able to achieve the best performance over the state-of-the-art methods. Also, SKU-Patch yields an average of nearly 100% grasping success rate on more than 50 unseen SKUs in a robot-aided auto-store logistic pipeline, showing its effectiveness and practicality.
Knowledge graph construction (KGC) is a multifaceted undertaking involving the extraction of entities, relations, and events. Traditionally, large language models (LLMs) have been viewed as solitary task-solving agents in this complex landscape. However, this paper challenges this paradigm by introducing a novel framework, CooperKGC. Departing from the conventional approach, CooperKGC establishes a collaborative processing network, assembling a KGC collaboration team capable of concurrently addressing entity, relation, and event extraction tasks. Our experiments unequivocally demonstrate that fostering collaboration and information interaction among diverse agents within CooperKGC yields superior results compared to individual cognitive processes operating in isolation. Importantly, our findings reveal that the collaboration facilitated by CooperKGC enhances knowledge selection, correction, and aggregation capabilities across multiple rounds of interactions.
Recent real-time semantic segmentation methods usually adopt an additional semantic branch to pursue rich long-range context. However, the additional branch incurs undesirable computational overhead and slows inference speed. To eliminate this dilemma, we propose SCTNet, a single branch CNN with transformer semantic information for real-time segmentation. SCTNet enjoys the rich semantic representations of an inference-free semantic branch while retaining the high efficiency of lightweight single branch CNN. SCTNet utilizes a transformer as the training-only semantic branch considering its superb ability to extract long-range context. With the help of the proposed transformer-like CNN block CFBlock and the semantic information alignment module, SCTNet could capture the rich semantic information from the transformer branch in training. During the inference, only the single branch CNN needs to be deployed. We conduct extensive experiments on Cityscapes, ADE20K, and COCO-Stuff-10K, and the results show that our method achieves the new state-of-the-art performance. The code and model is available at //github.com/xzz777/SCTNet
Res-Tuning introduces a flexible and efficient paradigm for model tuning, showing that tuners decoupled from the backbone network can achieve performance comparable to traditional methods. Existing methods commonly construct the tuner as a set of trainable low-rank decomposition matrices, positing that a low-rank subspace suffices for adapting pre-trained foundational models to new scenarios. In this work, we present an advanced, efficient tuner augmented with low-rank attention, termed Res-Attn , which also adheres to the Res-Tuning framework. Res-Attn utilizes a parallel multi-head attention module equipped with low-rank projections for query, key, and value to execute streamlined attention operations. Through training this lightweight attention module, Res-Attn facilitates adaptation to new scenarios. Our extensive experiments across a range of discriminative and generative tasks showcase the superior performance of our method when compared to existing alternatives
Ethereum smart contracts, which are autonomous decentralized applications on the blockchain that manage assets often exceeding millions of dollars, have become primary targets for cyberattacks. In 2023 alone, such vulnerabilities led to substantial financial losses exceeding a billion of US dollars. To counter these threats, various tools have been developed by academic and commercial entities to detect and mitigate vulnerabilities in smart contracts. Our study investigates the gap between the effectiveness of existing security scanners and the vulnerabilities that still persist in practice. We compiled four distinct datasets for this analysis. The first dataset comprises 77,219 source codes extracted directly from the blockchain, while the second includes over 4 million bytecodes obtained from Ethereum Mainnet and testnets. The other two datasets consist of nearly 14,000 manually annotated smart contracts and 373 smart contracts verified through audits, providing a foundation for a rigorous ground truth analysis on bytecode and source code. Using the unlabeled datasets, we conducted a comprehensive quantitative evaluation of 17 vulnerability scanners, revealing considerable discrepancies in their findings. Our analysis of the ground truth datasets indicated poor performance across all the tools we tested. This study unveils the reasons for poor performance and underscores that the current state of the art for smart contract security falls short in effectively addressing open problems, highlighting that the challenge of effectively detecting vulnerabilities remains a significant and unresolved issue.
In modern computer networks where sophisticated cyber attacks occur daily, a timely cyber risk assessment becomes paramount. Attack Graph (AG) represents the best-suited solution to model and analyze multi-step attacks on computer networks, although they suffer from poor scalability due to their combinatorial complexity. This paper introduces an analysis-driven framework for AG generation. It enables real-time attack path analysis before the completion of the AG generation with a quantifiable statistical significance. We further accelerate the AG generation by steering it with the analysis query and supporting a novel workflow in which the analyst can query the system anytime. To show the capabilities of the proposed framework, we perform an extensive quantitative validation and we present a realistic case study on networks of unprecedented size. It demonstrates the advantages of our approach in terms of scalability and fitting to common attack path analyses.
Robot manipulation relies on accurately predicting contact points and end-effector directions to ensure successful operation. However, learning-based robot manipulation, trained on a limited category within a simulator, often struggles to achieve generalizability, especially when confronted with extensive categories. Therefore, we introduce an innovative approach for robot manipulation that leverages the robust reasoning capabilities of Multimodal Large Language Models (MLLMs) to enhance the stability and generalization of manipulation. By fine-tuning the injected adapters, we preserve the inherent common sense and reasoning ability of the MLLMs while equipping them with the ability for manipulation. The fundamental insight lies in the introduced fine-tuning paradigm, encompassing object category understanding, affordance prior reasoning, and object-centric pose prediction to stimulate the reasoning ability of MLLM in manipulation. During inference, our approach utilizes an RGB image and text prompt to predict the end effector's pose in chain of thoughts. After the initial contact is established, an active impedance adaptation policy is introduced to plan the upcoming waypoints in a closed-loop manner. Moreover, in real world, we design a test-time adaptation (TTA) strategy for manipulation to enable the model better adapt to the current real-world scene configuration. Experiments in simulator and real-world show the promising performance of ManipLLM. More details and demonstrations can be found at //sites.google.com/view/manipllm.
Generalization to out-of-distribution (OOD) data is a capability natural to humans yet challenging for machines to reproduce. This is because most learning algorithms strongly rely on the i.i.d.~assumption on source/target data, which is often violated in practice due to domain shift. Domain generalization (DG) aims to achieve OOD generalization by using only source data for model learning. Since first introduced in 2011, research in DG has made great progresses. In particular, intensive research in this topic has led to a broad spectrum of methodologies, e.g., those based on domain alignment, meta-learning, data augmentation, or ensemble learning, just to name a few; and has covered various vision applications such as object recognition, segmentation, action recognition, and person re-identification. In this paper, for the first time a comprehensive literature review is provided to summarize the developments in DG for computer vision over the past decade. Specifically, we first cover the background by formally defining DG and relating it to other research fields like domain adaptation and transfer learning. Second, we conduct a thorough review into existing methods and present a categorization based on their methodologies and motivations. Finally, we conclude this survey with insights and discussions on future research directions.
Sequential recommendation (SR) is to accurately recommend a list of items for a user based on her current accessed ones. While new-coming users continuously arrive in the real world, one crucial task is to have inductive SR that can produce embeddings of users and items without re-training. Given user-item interactions can be extremely sparse, another critical task is to have transferable SR that can transfer the knowledge derived from one domain with rich data to another domain. In this work, we aim to present the holistic SR that simultaneously accommodates conventional, inductive, and transferable settings. We propose a novel deep learning-based model, Relational Temporal Attentive Graph Neural Networks (RetaGNN), for holistic SR. The main idea of RetaGNN is three-fold. First, to have inductive and transferable capabilities, we train a relational attentive GNN on the local subgraph extracted from a user-item pair, in which the learnable weight matrices are on various relations among users, items, and attributes, rather than nodes or edges. Second, long-term and short-term temporal patterns of user preferences are encoded by a proposed sequential self-attention mechanism. Third, a relation-aware regularization term is devised for better training of RetaGNN. Experiments conducted on MovieLens, Instagram, and Book-Crossing datasets exhibit that RetaGNN can outperform state-of-the-art methods under conventional, inductive, and transferable settings. The derived attention weights also bring model explainability.
Generative commonsense reasoning which aims to empower machines to generate sentences with the capacity of reasoning over a set of concepts is a critical bottleneck for text generation. Even the state-of-the-art pre-trained language generation models struggle at this task and often produce implausible and anomalous sentences. One reason is that they rarely consider incorporating the knowledge graph which can provide rich relational information among the commonsense concepts. To promote the ability of commonsense reasoning for text generation, we propose a novel knowledge graph augmented pre-trained language generation model KG-BART, which encompasses the complex relations of concepts through the knowledge graph and produces more logical and natural sentences as output. Moreover, KG-BART can leverage the graph attention to aggregate the rich concept semantics that enhances the model generalization on unseen concept sets. Experiments on benchmark CommonGen dataset verify the effectiveness of our proposed approach by comparing with several strong pre-trained language generation models, particularly KG-BART outperforms BART by 5.80, 4.60, in terms of BLEU-3, 4. Moreover, we also show that the generated context by our model can work as background scenarios to benefit downstream commonsense QA tasks.
Distant supervision can effectively label data for relation extraction, but suffers from the noise labeling problem. Recent works mainly perform soft bag-level noise reduction strategies to find the relatively better samples in a sentence bag, which is suboptimal compared with making a hard decision of false positive samples in sentence level. In this paper, we introduce an adversarial learning framework, which we named DSGAN, to learn a sentence-level true-positive generator. Inspired by Generative Adversarial Networks, we regard the positive samples generated by the generator as the negative samples to train the discriminator. The optimal generator is obtained until the discrimination ability of the discriminator has the greatest decline. We adopt the generator to filter distant supervision training dataset and redistribute the false positive instances into the negative set, in which way to provide a cleaned dataset for relation classification. The experimental results show that the proposed strategy significantly improves the performance of distant supervision relation extraction comparing to state-of-the-art systems.