亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

This paper addresses the critical issue of psychological safety in the design and operation of autonomous vehicles, which are increasingly integrated with artificial intelligence technologies. While traditional safety standards focus primarily on physical safety, this paper emphasizes the psychological implications that arise from human interactions with autonomous vehicles, highlighting the importance of trust and perceived risk as significant factors influencing user acceptance. Through a review of existing safety techniques, the paper defines psychological safety in the context of autonomous vehicles, proposes a risk model to identify and assess psychological risks, and adopts a system-theoretic analysis method. The paper illustrates the potential psychological hazards using a scenario involving a family's experience with an autonomous vehicle, aiming to systematically evaluate situations that could lead to psychological harm. By establishing a framework that incorporates psychological safety alongside physical safety, the paper contributes to the broader discourse on the safe deployment of autonomous vehicle and aims to guide future developments in user-cantered design and regulatory practices.

相關內容

論文(Paper)是專知(zhi)網(wang)站核心資料文檔(dang),包括全球頂級期(qi)(qi)刊(kan)、頂級會(hui)議(yi)(yi)論文,及全球頂尖高校博士碩士學(xue)(xue)位論文。重點關注(zhu)中國計(ji)算機學(xue)(xue)會(hui)推薦的國際學(xue)(xue)術(shu)會(hui)議(yi)(yi)和(he)期(qi)(qi)刊(kan),CCF-A、B、C三(san)類。通過人機協作(zuo)方式,匯編(bian)、挖掘(jue)后呈現于專知(zhi)網(wang)站。

This paper studies a combined person reidentification (re-id) method that uses human parsing, analytical feature extraction and similarity estimation schemes. One of its prominent features is its low computational requirements so it can be implemented on edge devices. The method allows direct comparison of specific image regions using interpretable features which consist of color and texture channels. It is proposed to analyze and compare colors in CIE-Lab color space using histogram smoothing for noise reduction. A novel pre-configured latent space (LS) supervised autoencoder (SAE) is proposed for texture analysis which encodes input textures as LS points. This allows to obtain more accurate similarity measures compared to simplistic label comparison. The proposed method also does not rely upon photos or other re-id data for training, which makes it completely re-id dataset-agnostic. The viability of the proposed method is verified by computing rank-1, rank-10, and mAP re-id metrics on Market1501 dataset. The results are comparable to those of conventional deep learning methods and the potential ways to further improve the method are discussed.

Equivariant neural networks are neural networks with symmetry. Motivated by the theory of group representations, we decompose the layers of an equivariant neural network into simple representations. The nonlinear activation functions lead to interesting nonlinear equivariant maps between simple representations. For example, the rectified linear unit (ReLU) gives rise to piecewise linear maps. We show that these considerations lead to a filtration of equivariant neural networks, generalizing Fourier series. This observation might provide a useful tool for interpreting equivariant neural networks.

An important challenge in machine learning is to predict the initial conditions under which a given neural network will be trainable. We present a method for predicting the trainable regime in parameter space for deep feedforward neural networks (DNNs) based on reconstructing the input from subsequent activation layers via a cascade of single-layer auxiliary networks. We show that a single epoch of training of the shallow cascade networks is sufficient to predict the trainability of the deep feedforward network on a range of datasets (MNIST, CIFAR10, FashionMNIST, and white noise), thereby providing a significant reduction in overall training time. We achieve this by computing the relative entropy between reconstructed images and the original inputs, and show that this probe of information loss is sensitive to the phase behaviour of the network. We further demonstrate that this method generalizes to residual neural networks (ResNets) and convolutional neural networks (CNNs). Moreover, our method illustrates the network's decision making process by displaying the changes performed on the input data at each layer, which we demonstrate for both a DNN trained on MNIST and the vgg16 CNN trained on the ImageNet dataset. Our results provide a technique for significantly accelerating the training of large neural networks.

In this paper, we present the numerical analysis and simulations of a multi-dimensional memristive device model. Memristive devices and memtransistors based on two-dimensional (2D) materials have demonstrated promising potential as components for next-generation artificial intelligence (AI) hardware and information technology. Our charge transport model describes the drift-diffusion of electrons, holes, and ionic defects self-consistently in an electric field. We incorporate two types of boundary models: ohmic and Schottky contacts. The coupled drift-diffusion partial differential equations are discretized using a physics-preserving Voronoi finite volume method. It relies on an implicit time-stepping scheme and the excess chemical potential flux approximation. We demonstrate that the fully discrete nonlinear scheme is unconditionally stable, preserving the free-energy structure of the continuous system and ensuring the non-negativity of carrier densities. Novel discrete entropy-dissipation inequalities for both boundary condition types in multiple dimensions allow us to prove the existence of discrete solutions. We perform multi-dimensional simulations to understand the impact of electrode configurations and device geometries, focusing on the hysteresis behavior in lateral 2D memristive devices. Three electrode configurations -- side, top, and mixed contacts -- are compared numerically for different geometries and boundary conditions. These simulations reveal the conditions under which a simplified one-dimensional electrode geometry can well represent the three electrode configurations. This work lays the foundations for developing accurate, efficient simulation tools for 2D memristive devices and memtransistors, offering tools and guidelines for their design and optimization in future applications.

This paper addresses the problem of adaptively controlling the bias parameter in nonlinear opinion dynamics (NOD) to allocate agents into groups of arbitrary sizes for the purpose of maximizing collective rewards. In previous work, an algorithm based on the coupling of NOD with an multi-objective behavior optimization was successfully deployed as part of a multi-robot system in an autonomous task allocation field experiment. Motivated by the field results, in this paper we propose and analyze a new task allocation model that synthesizes NOD with an evolutionary game framework. We prove sufficient conditions under which it is possible to control the opinion state in the group to a desired allocation of agents between two tasks through an adaptive bias using decentralized feedback. We then verify the theoretical results with a simulation study of a collaborative evolutionary division of labor game.

One of the questions in Rigidity Theory is whether a realization of the vertices of a graph in the plane is flexible, namely, if it allows a continuous deformation preserving the edge lengths. A flexible realization of a connected graph in the plane exists if and only if the graph has a so called NAC-coloring, which is surjective edge coloring by two colors such that for each cycle either all the edges have the same color or there are at least two edges of each color. The question whether a graph has a NAC-coloring, and hence also the existence of a flexible realization, has been proven to be NP-complete. We show that this question is also NP-complete on graphs with maximum degree five and on graphs with the average degree at most $4+\varepsilon$ for every fixed $\varepsilon >0$. The existence of a NAC-coloring is fixed parameter tractable when parametrized by treewidth. Since the only existing implementation of checking the existence of a NAC-coloring is rather naive, we propose new algorithms along with their implementation, which is significantly faster. We also focus on searching all NAC-colorings of a graph, since they provide useful information about its possible flexible realizations.

'A trustworthy representation of uncertainty is desirable and should be considered as a key feature of any machine learning method' (Huellermeier and Waegeman, 2021). This conclusion of Huellermeier et al. underpins the importance of calibrated uncertainties. Since AI-based algorithms are heavily impacted by dataset shifts, the automotive industry needs to safeguard its system against all possible contingencies. One important but often neglected dataset shift is caused by optical aberrations induced by the windshield. For the verification of the perception system performance, requirements on the AI performance need to be translated into optical metrics by a bijective mapping (Braun, 2023). Given this bijective mapping it is evident that the optical system characteristics add additional information about the magnitude of the dataset shift. As a consequence, we propose to incorporate a physical inductive bias into the neural network calibration architecture to enhance the robustness and the trustworthiness of the AI target application, which we demonstrate by using a semantic segmentation task as an example. By utilizing the Zernike coefficient vector of the optical system as a physical prior we can significantly reduce the mean expected calibration error in case of optical aberrations. As a result, we pave the way for a trustworthy uncertainty representation and for a holistic verification strategy of the perception chain.

Statistical learning under distribution shift is challenging when neither prior knowledge nor fully accessible data from the target distribution is available. Distributionally robust learning (DRL) aims to control the worst-case statistical performance within an uncertainty set of candidate distributions, but how to properly specify the set remains challenging. To enable distributional robustness without being overly conservative, in this paper, we propose a shape-constrained approach to DRL, which incorporates prior information about the way in which the unknown target distribution differs from its estimate. More specifically, we assume the unknown density ratio between the target distribution and its estimate is isotonic with respect to some partial order. At the population level, we provide a solution to the shape-constrained optimization problem that does not involve the isotonic constraint. At the sample level, we provide consistency results for an empirical estimator of the target in a range of different settings. Empirical studies on both synthetic and real data examples demonstrate the improved accuracy of the proposed shape-constrained approach.

From environmental sciences to finance, there are growing needs for assessing the risk of more extreme events than those observed. Extrapolating extreme events beyond the range of the data is not obvious and requires advanced tools based on extreme value theory. Furthermore, the complexity of risk assessments often requires the inclusion of multiple variables. Extreme value theory provides very important tools for the analysis of multivariate or spatial extreme events, but these are not easily accessible to professionals without appropriate expertise. This article provides a minimal background on multivariate and spatial extremes and gives simple yet thorough instructions to analyse high-dimensional extremes using the R package ExtremalDep. After briefly introducing the statistical methodologies, we focus on road testing the package's toolbox through several real-world applications.

Composite materials often exhibit mechanical anisotropy owing to the material properties or geometrical configurations of the microstructure. This makes their inverse design a two-fold problem. First, we must learn the type and orientation of anisotropy and then find the optimal design parameters to achieve the desired mechanical response. In our work, we solve this challenge by first training a forward surrogate model based on the macroscopic stress-strain data obtained via computational homogenization for a given multiscale material. To this end, we use partially Input Convex Neural Networks (pICNNs) to obtain a polyconvex representation of the strain energy in terms of the invariants of the Cauchy-Green deformation tensor. The network architecture and the strain energy function are modified to incorporate, by construction, physics and mechanistic assumptions into the framework. While training the neural network, we find the type of anisotropy, if any, along with the preferred directions. Once the model is trained, we solve the inverse problem using an evolution strategy to obtain the design parameters that give a desired mechanical response. We test the framework against synthetic macroscale and also homogenized data. For cases where polyconvexity might be violated during the homogenization process, we present viable alternate formulations. The trained model is also integrated into a finite element framework to invert design parameters that result in a desired macroscopic response. We show that the invariant-based model is able to solve the inverse problem for a stress-strain dataset with a different preferred direction than the one it was trained on and is able to not only learn the polyconvex potentials of hyperelastic materials but also recover the correct parameters for the inverse design problem.

北京阿比特科技有限公司