Embedding Based Retrieval (EBR) is a crucial component of the retrieval stage in (Ads) Recommendation System that utilizes Two Tower or Siamese Networks to learn embeddings for both users and items (ads). It then employs an Approximate Nearest Neighbor Search (ANN) to efficiently retrieve the most relevant ads for a specific user. Despite the recent rise to popularity in the industry, they have a couple of limitations. Firstly, Two Tower model architecture uses a single dot product interaction which despite their efficiency fail to capture the data distribution in practice. Secondly, the centroid representation and cluster assignment, which are components of ANN, occur after the training process has been completed. As a result, they do not take into account the optimization criteria used for retrieval model. In this paper, we present Hierarchical Structured Neural Network (HSNN), a deployed jointly optimized hierarchical clustering and neural network model that can take advantage of sophisticated interactions and model architectures that are more common in the ranking stages while maintaining a sub-linear inference cost. We achieve 6.5% improvement in offline evaluation and also demonstrate 1.22% online gains through A/B experiments. HSNN has been successfully deployed into the Ads Recommendation system and is currently handling major portion of the traffic. The paper shares our experience in developing this system, dealing with challenges like freshness, volatility, cold start recommendations, cluster collapse and lessons deploying the model in a large scale retrieval production system.
Graphical User Interface (GUI) grounding plays a crucial role in enhancing the capabilities of Vision-Language Model (VLM) agents. While general VLMs, such as GPT-4V, demonstrate strong performance across various tasks, their proficiency in GUI grounding remains suboptimal. Recent studies have focused on fine-tuning these models specifically for one-shot GUI grounding, yielding significant improvements over baseline performance. We introduce a visual prompting framework that employs an iterative narrowing mechanism to further improve the performance of both general and fine-tuned models in GUI grounding. For evaluation, we tested our method on a comprehensive benchmark comprising various UI platforms and provided the code to reproduce our results.
A new Cyber Resilience Act (CRA) was recently agreed upon in the European Union (EU). It imposes many new cyber security requirements practically to all information technology products, whether hardware or software. The paper examines and elaborates the CRA's new requirements for vulnerability coordination, including vulnerability disclosure. Although these requirements are only a part of the CRA's obligations for vendors, also some new vulnerability coordination mandates are present, including particularly with respect to so-called actively exploited vulnerabilities. The CRA further alters the coordination practices on the side of public administrations. With the examination, elaboration, and associated discussion, the paper contributes to the study of cyber security regulations, providing also a few practical takeaways.
Estimating the uncertainty of responses of Large Language Models~(LLMs) remains a critical challenge. While recent Bayesian methods have demonstrated effectiveness in quantifying uncertainty through low-rank weight updates, they typically require complex fine-tuning or post-training procedures. In this paper, we propose Training-Free Bayesianization~(TFB), a novel framework that transforms existing off-the-shelf trained LoRA adapters into Bayesian ones without additional training. TFB systematically searches for the maximally acceptable level of variance in the weight posterior, constrained within a family of low-rank isotropic Gaussian distributions. We theoretically demonstrate that under mild conditions, this search process is equivalent to variational inference for the weights. Through comprehensive experiments, we show that TFB achieves superior uncertainty estimation and generalization compared to existing methods while eliminating the need for complex training procedures. Code will be available at //github.com/Wang-ML-Lab/bayesian-peft.
Recent advancements in high-fidelity dynamic scene reconstruction have leveraged dynamic 3D Gaussians and 4D Gaussian Splatting for realistic scene representation. However, to make these methods viable for real-time applications such as AR/VR, gaming, and rendering on low-power devices, substantial reductions in memory usage and improvements in rendering efficiency are required. While many state-of-the-art methods prioritize lightweight implementations, they struggle in handling scenes with complex motions or long sequences. In this work, we introduce Temporally Compressed 3D Gaussian Splatting (TC3DGS), a novel technique designed specifically to effectively compress dynamic 3D Gaussian representations. TC3DGS selectively prunes Gaussians based on their temporal relevance and employs gradient-aware mixed-precision quantization to dynamically compress Gaussian parameters. It additionally relies on a variation of the Ramer-Douglas-Peucker algorithm in a post-processing step to further reduce storage by interpolating Gaussian trajectories across frames. Our experiments across multiple datasets demonstrate that TC3DGS achieves up to 67$\times$ compression with minimal or no degradation in visual quality.
The Branch Target Buffer (BTB) plays a critical role in efficient CPU branch prediction. Understanding the design and implementation of the BTB provides valuable insights for both compiler design and the mitigation of hardware attacks such as Spectre. However, the proprietary nature of dominant CPUs, such as those from Intel, AMD, Apple, and Qualcomm, means that specific BTB implementation details are not publicly available. To address this limitation, several previous works have successfully reverse-engineered BTB information, including capacity and associativity, primarily targeting Intel's x86 processors. However, to our best knowledge, no research has attempted to reverse-engineer and expose the BTB implementation of ARM processors. This project aims to fill the gap by exploring the BTB of ARM processors. Specifically, we investigate whether existing reverse-engineering techniques developed for Intel BTB can be adapted for ARM. We reproduce the x86 methodology and identify specific PMU events for ARM to facilitate the reverse engineering process. In our experiment, we investigated our ARM CPU, i.e., the quad-core Cortex-A72 of the Raspberry Pi 4B. Our results show that the BTB capacity is 4K, the set index starts from the 5th bit and ends with the 15th bit of the PC (11 bits in total), and there are 2 ways in each set. The source code can be find at //github.com/stefan1wan/BTB_ARM_RE.
We introduce the Differentiable Weightless Neural Network (DWN), a model based on interconnected lookup tables. Training of DWNs is enabled by a novel Extended Finite Difference technique for approximate differentiation of binary values. We propose Learnable Mapping, Learnable Reduction, and Spectral Regularization to further improve the accuracy and efficiency of these models. We evaluate DWNs in three edge computing contexts: (1) an FPGA-based hardware accelerator, where they demonstrate superior latency, throughput, energy efficiency, and model area compared to state-of-the-art solutions, (2) a low-power microcontroller, where they achieve preferable accuracy to XGBoost while subject to stringent memory constraints, and (3) ultra-low-cost chips, where they consistently outperform small models in both accuracy and projected hardware area. DWNs also compare favorably against leading approaches for tabular datasets, with higher average rank. Overall, our work positions DWNs as a pioneering solution for edge-compatible high-throughput neural networks.
As the strength of Large Language Models (LLMs) has grown over recent years, so too has interest in their use as the underlying models for autonomous agents. Although LLMs demonstrate emergent abilities and broad expertise across natural language domains, their inherent unpredictability makes the implementation of LLM agents challenging, resulting in a gap between related research and the real-world implementation of such systems. To bridge this gap, this paper frames actionable insights and considerations from the research community in the context of established application paradigms to enable the construction and facilitate the informed deployment of robust LLM agents. Namely, we position relevant research findings into four broad categories--Planning, Memory, Tools, and Control Flow--based on common practices in application-focused literature and highlight practical considerations to make when designing agentic LLMs for real-world applications, such as handling stochasticity and managing resources efficiently. While we do not conduct empirical evaluations, we do provide the necessary background for discussing critical aspects of agentic LLM designs, both in academia and industry.
Multimodal Large Language Model (MLLM) recently has been a new rising research hotspot, which uses powerful Large Language Models (LLMs) as a brain to perform multimodal tasks. The surprising emergent capabilities of MLLM, such as writing stories based on images and OCR-free math reasoning, are rare in traditional methods, suggesting a potential path to artificial general intelligence. In this paper, we aim to trace and summarize the recent progress of MLLM. First of all, we present the formulation of MLLM and delineate its related concepts. Then, we discuss the key techniques and applications, including Multimodal Instruction Tuning (M-IT), Multimodal In-Context Learning (M-ICL), Multimodal Chain of Thought (M-CoT), and LLM-Aided Visual Reasoning (LAVR). Finally, we discuss existing challenges and point out promising research directions. In light of the fact that the era of MLLM has only just begun, we will keep updating this survey and hope it can inspire more research. An associated GitHub link collecting the latest papers is available at //github.com/BradyFU/Awesome-Multimodal-Large-Language-Models.
This work aims to provide an engagement decision support tool for Beyond Visual Range (BVR) air combat in the context of Defensive Counter Air (DCA) missions. In BVR air combat, engagement decision refers to the choice of the moment the pilot engages a target by assuming an offensive stance and executing corresponding maneuvers. To model this decision, we use the Brazilian Air Force's Aerospace Simulation Environment (\textit{Ambiente de Simula\c{c}\~ao Aeroespacial - ASA} in Portuguese), which generated 3,729 constructive simulations lasting 12 minutes each and a total of 10,316 engagements. We analyzed all samples by an operational metric called the DCA index, which represents, based on the experience of subject matter experts, the degree of success in this type of mission. This metric considers the distances of the aircraft of the same team and the opposite team, the point of Combat Air Patrol, and the number of missiles used. By defining the engagement status right before it starts and the average of the DCA index throughout the engagement, we create a supervised learning model to determine the quality of a new engagement. An algorithm based on decision trees, working with the XGBoost library, provides a regression model to predict the DCA index with a coefficient of determination close to 0.8 and a Root Mean Square Error of 0.05 that can furnish parameters to the BVR pilot to decide whether or not to engage. Thus, using data obtained through simulations, this work contributes by building a decision support system based on machine learning for BVR air combat.
We introduce an effective model to overcome the problem of mode collapse when training Generative Adversarial Networks (GAN). Firstly, we propose a new generator objective that finds it better to tackle mode collapse. And, we apply an independent Autoencoders (AE) to constrain the generator and consider its reconstructed samples as "real" samples to slow down the convergence of discriminator that enables to reduce the gradient vanishing problem and stabilize the model. Secondly, from mappings between latent and data spaces provided by AE, we further regularize AE by the relative distance between the latent and data samples to explicitly prevent the generator falling into mode collapse setting. This idea comes when we find a new way to visualize the mode collapse on MNIST dataset. To the best of our knowledge, our method is the first to propose and apply successfully the relative distance of latent and data samples for stabilizing GAN. Thirdly, our proposed model, namely Generative Adversarial Autoencoder Networks (GAAN), is stable and has suffered from neither gradient vanishing nor mode collapse issues, as empirically demonstrated on synthetic, MNIST, MNIST-1K, CelebA and CIFAR-10 datasets. Experimental results show that our method can approximate well multi-modal distribution and achieve better results than state-of-the-art methods on these benchmark datasets. Our model implementation is published here: //github.com/tntrung/gaan