亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

In this work, we study the deep signature algorithms for path-dependent options. We extend the backward scheme in [Hur\'e-Pham-Warin. Mathematics of Computation 89, no. 324 (2020)] for state-dependent FBSDEs with reflections to path-dependent FBSDEs with reflections, by adding the signature layer to the backward scheme. Our algorithm applies to both European and American type option pricing problems while the payoff function depends on the whole paths of the underlying forward stock process. We prove the convergence analysis of our numerical algorithm with explicit dependence on the truncation order of the signature and the neural network approximation errors. Numerical examples for the algorithm are provided including: Amerasian option under the Black-Scholes model, American option with a path-dependent geometric mean payoff function, and the Shiryaev's optimal stopping problem.

相關內容

We introduce a new approach to prediction in graphical models with latent-shift adaptation, i.e., where source and target environments differ in the distribution of an unobserved confounding latent variable. Previous work has shown that as long as "concept" and "proxy" variables with appropriate dependence are observed in the source environment, the latent-associated distributional changes can be identified, and target predictions adapted accurately. However, practical estimation methods do not scale well when the observations are complex and high-dimensional, even if the confounding latent is categorical. Here we build upon a recently proposed probabilistic unsupervised learning framework, the recognition-parametrised model (RPM), to recover low-dimensional, discrete latents from image observations. Applied to the problem of latent shifts, our novel form of RPM identifies causal latent structure in the source environment, and adapts properly to predict in the target. We demonstrate results in settings where predictor and proxy are high-dimensional images, a context to which previous methods fail to scale.

Recently, physics informed neural networks (PINNs) have been explored extensively for solving various forward and inverse problems and facilitating querying applications in fluid mechanics applications. However, work on PINNs for unsteady flows past moving bodies, such as flapping wings is scarce. Earlier studies mostly relied on transferring to a body attached frame of reference which is restrictive towards handling multiple moving bodies or deforming structures. Hence, in the present work, an immersed boundary aware framework has been explored for developing surrogate models for unsteady flows past moving bodies. Specifically, simultaneous pressure recovery and velocity reconstruction from Immersed boundary method (IBM) simulation data has been investigated. While, efficacy of velocity reconstruction has been tested against the fine resolution IBM data, as a step further, the pressure recovered was compared with that of an arbitrary Lagrange Eulerian (ALE) based solver. Under this framework, two PINN variants, (i) a moving-boundary-enabled standard Navier-Stokes based PINN (MB-PINN), and, (ii) a moving-boundary-enabled IBM based PINN (MB-IBM-PINN) have been formulated. A fluid-solid partitioning of the physics losses in MB-IBM-PINN has been allowed, in order to investigate the effects of solid body points while training. This enables MB-IBM-PINN to match with the performance of MB-PINN under certain loss weighting conditions. MB-PINN is found to be superior to MB-IBM-PINN when {\it a priori} knowledge of the solid body position and velocity are available. To improve the data efficiency of MB-PINN, a physics based data sampling technique has also been investigated. It is observed that a suitable combination of physics constraint relaxation and physics based sampling can achieve a model performance comparable to the case of using all the data points, under a fixed training budget.

Motivated by the novel paradigm developed by Van Roy and coauthors for reinforcement learning in arbitrary non-Markovian environments, we propose a related formulation and explicitly pin down the error caused by non-Markovianity of observations when the Q-learning algorithm is applied on this formulation. Based on this observation, we propose that the criterion for agent design should be to seek good approximations for certain conditional laws. Inspired by classical stochastic control, we show that our problem reduces to that of recursive computation of approximate sufficient statistics. This leads to an autoencoder-based scheme for agent design which is then numerically tested on partially observed reinforcement learning environments.

We improve the Solovay-Kitaev theorem and algorithm for a general finite, inverse-closed generating set acting on a qudit. Prior versions of the algorithm can efficiently find a word of length $O((\log 1/\epsilon)^{3+\delta})$ to approximate an arbitrary target gate to within $\epsilon$. Using two new ideas, each of which reduces the exponent separately, our new bound on the world length is $O((\log 1/\epsilon)^{1.44042\ldots+\delta})$. Our result holds more generally for any finite set that densely generates any connected, semisimple real Lie group, with an extra length term in the non-compact case to reach group elements far away from the identity.

In stochastic zeroth-order optimization, a problem of practical relevance is understanding how to fully exploit the local geometry of the underlying objective function. We consider a fundamental setting in which the objective function is quadratic, and provide the first tight characterization of the optimal Hessian-dependent sample complexity. Our contribution is twofold. First, from an information-theoretic point of view, we prove tight lower bounds on Hessian-dependent complexities by introducing a concept called energy allocation, which captures the interaction between the searching algorithm and the geometry of objective functions. A matching upper bound is obtained by solving the optimal energy spectrum. Then, algorithmically, we show the existence of a Hessian-independent algorithm that universally achieves the asymptotic optimal sample complexities for all Hessian instances. The optimal sample complexities achieved by our algorithm remain valid for heavy-tailed noise distributions, which are enabled by a truncation method.

The increasing use of graph-structured data for business- and privacy-critical applications requires sophisticated, flexible and fine-grained authorization and access control. Currently, role-based access control is supported in graph databases, where access to objects is restricted via roles. This does not take special properties of graphs into account such as vertices and edges along the path between a given subject and resource. In previous iterations of our research, we started to design an authorization policy language and access control model, which considers the specification of graph paths and enforces them in the multi-model database ArangoDB. Since this approach is promising to consider graph characteristics in data protection, we improve the language in this work to provide flexible path definitions and specifying edges as protected resources. Furthermore, we introduce a method for a datastore-independent policy enforcement. Besides discussing the latest work in our XACML4G model, which is an extension to the Extensible Access Control Markup Language (XACML), we demonstrate our prototypical implementation with a real case and give an outlook on performance.

A well-known boundary observability inequality for the elasticity system establishes that the energy of the system can be estimated from the solution on a sufficiently large part of the boundary for a sufficiently large time. This inequality is relevant in different contexts as the exact boundary controllability, boundary stabilization, or some inverse source problems. Here we show that a corresponding boundary observability inequality for the spectral collocation approximation of the linear elasticity system in a d-dimensional cube also holds, uniformly with respect to the discretization parameter. This property is essential to prove that natural numerical approaches to the previous problems based on replacing the elasticity system by collocation discretization will give successful approximations of the continuous counterparts.

In this paper, we present new high-probability PAC-Bayes bounds for different types of losses. Firstly, for losses with a bounded range, we present a strengthened version of Catoni's bound that holds uniformly for all parameter values. This leads to new fast rate and mixed rate bounds that are interpretable and tighter than previous bounds in the literature. Secondly, for losses with more general tail behaviors, we introduce two new parameter-free bounds: a PAC-Bayes Chernoff analogue when the loss' cumulative generating function is bounded, and a bound when the loss' second moment is bounded. These two bounds are obtained using a new technique based on a discretization of the space of possible events for the "in probability" parameter optimization problem. Finally, we extend all previous results to anytime-valid bounds using a simple technique applicable to any existing bound.

For safety and robustness of AI systems, we introduce topological parallax as a theoretical and computational tool that compares a trained model to a reference dataset to determine whether they have similar multiscale geometric structure. Our proofs and examples show that this geometric similarity between dataset and model is essential to trustworthy interpolation and perturbation, and we conjecture that this new concept will add value to the current debate regarding the unclear relationship between overfitting and generalization in applications of deep-learning. In typical DNN applications, an explicit geometric description of the model is impossible, but parallax can estimate topological features (components, cycles, voids, etc.) in the model by examining the effect on the Rips complex of geodesic distortions using the reference dataset. Thus, parallax indicates whether the model shares similar multiscale geometric features with the dataset. Parallax presents theoretically via topological data analysis [TDA] as a bi-filtered persistence module, and the key properties of this module are stable under perturbation of the reference dataset.

Deep learning is usually described as an experiment-driven field under continuous criticizes of lacking theoretical foundations. This problem has been partially fixed by a large volume of literature which has so far not been well organized. This paper reviews and organizes the recent advances in deep learning theory. The literature is categorized in six groups: (1) complexity and capacity-based approaches for analyzing the generalizability of deep learning; (2) stochastic differential equations and their dynamic systems for modelling stochastic gradient descent and its variants, which characterize the optimization and generalization of deep learning, partially inspired by Bayesian inference; (3) the geometrical structures of the loss landscape that drives the trajectories of the dynamic systems; (4) the roles of over-parameterization of deep neural networks from both positive and negative perspectives; (5) theoretical foundations of several special structures in network architectures; and (6) the increasingly intensive concerns in ethics and security and their relationships with generalizability.

北京阿比特科技有限公司