Translational research requires data at multiple scales of biological organization. Advancements in sequencing and multi-omics technologies have increased the availability of these data, but researchers face significant integration challenges. Knowledge graphs (KGs) are used to model complex phenomena, and methods exist to construct them automatically. However, tackling complex biomedical integration problems requires flexibility in the way knowledge is modeled. Moreover, existing KG construction methods provide robust tooling at the cost of fixed or limited choices among knowledge representation models. PheKnowLator (Phenotype Knowledge Translator) is a semantic ecosystem for automating the FAIR (Findable, Accessible, Interoperable, and Reusable) construction of ontologically grounded KGs with fully customizable knowledge representation. The ecosystem includes KG construction resources (e.g., data preparation APIs), analysis tools (e.g., SPARQL endpoints and abstraction algorithms), and benchmarks (e.g., prebuilt KGs and embeddings). We evaluated the ecosystem by systematically comparing it to existing open-source KG construction methods and by analyzing its computational performance when used to construct 12 large-scale KGs. With flexible knowledge representation, PheKnowLator enables fully customizable KGs without compromising performance or usability.
Background: Missing data is a common challenge in mass spectrometry-based metabolomics, which can lead to biased and incomplete analyses. The integration of whole-genome sequencing (WGS) data with metabolomics data has emerged as a promising approach to enhance the accuracy of data imputation in metabolomics studies. Method: In this study, we propose a novel method that leverages the information from WGS data and reference metabolites to impute unknown metabolites. Our approach utilizes a multi-view variational autoencoder to jointly model the burden score, polygenetic risk score (PGS), and linkage disequilibrium (LD) pruned single nucleotide polymorphisms (SNPs) for feature extraction and missing metabolomics data imputation. By learning the latent representations of both omics data, our method can effectively impute missing metabolomics values based on genomic information. Results: We evaluate the performance of our method on empirical metabolomics datasets with missing values and demonstrate its superiority compared to conventional imputation techniques. Using 35 template metabolites derived burden scores, PGS and LD-pruned SNPs, the proposed methods achieved R^2-scores > 0.01 for 71.55% of metabolites. Conclusion: The integration of WGS data in metabolomics imputation not only improves data completeness but also enhances downstream analyses, paving the way for more comprehensive and accurate investigations of metabolic pathways and disease associations. Our findings offer valuable insights into the potential benefits of utilizing WGS data for metabolomics data imputation and underscore the importance of leveraging multi-modal data integration in precision medicine research.
Kernel techniques are among the most influential approaches in data science and statistics. Under mild conditions, the reproducing kernel Hilbert space associated to a kernel is capable of encoding the independence of $M\ge 2$ random variables. Probably the most widespread independence measure relying on kernels is the so-called Hilbert-Schmidt independence criterion (HSIC; also referred to as distance covariance in the statistics literature). Despite various existing HSIC estimators designed since its introduction close to two decades ago, the fundamental question of the rate at which HSIC can be estimated is still open. In this work, we prove that the minimax optimal rate of HSIC estimation on $\mathbb R^d$ for Borel measures containing the Gaussians with continuous bounded translation-invariant characteristic kernels is $\mathcal O\!\left(n^{-1/2}\right)$. Specifically, our result implies the optimality in the minimax sense of many of the most-frequently used estimators (including the U-statistic, the V-statistic, and the Nystr\"om-based one) on $\mathbb R^d$.
Image super-resolution (SR) methods typically model degradation to improve reconstruction accuracy in complex and unknown degradation scenarios. However, extracting degradation information from low-resolution images is challenging, which limits the model performance. To boost image SR performance, one feasible approach is to introduce additional priors. Inspired by advancements in multi-modal methods and text prompt image processing, we introduce text prompts to image SR to provide degradation priors. Specifically, we first design a text-image generation pipeline to integrate text into the SR dataset through the text degradation representation and degradation model. The text representation applies a discretization manner based on the binning method to describe the degradation abstractly. This method maintains the flexibility of the text and is user-friendly. Meanwhile, we propose the PromptSR to realize the text prompt SR. The PromptSR utilizes the pre-trained language model (e.g., T5 or CLIP) to enhance restoration. We train the model on the generated text-image dataset. Extensive experiments indicate that introducing text prompts into SR, yields excellent results on both synthetic and real-world images. Code is available at: //github.com/zhengchen1999/PromptSR.
We propose a zero-shot approach to image harmonization, aiming to overcome the reliance on large amounts of synthetic composite images in existing methods. These methods, while showing promising results, involve significant training expenses and often struggle with generalization to unseen images. To this end, we introduce a fully modularized framework inspired by human behavior. Leveraging the reasoning capabilities of recent foundation models in language and vision, our approach comprises three main stages. Initially, we employ a pretrained vision-language model (VLM) to generate descriptions for the composite image. Subsequently, these descriptions guide the foreground harmonization direction of a text-to-image generative model (T2I). We refine text embeddings for enhanced representation of imaging conditions and employ self-attention and edge maps for structure preservation. Following each harmonization iteration, an evaluator determines whether to conclude or modify the harmonization direction. The resulting framework, mirroring human behavior, achieves harmonious results without the need for extensive training. We present compelling visual results across diverse scenes and objects, along with a user study validating the effectiveness of our approach.
The techniques used to generate pseudo-random numbers for Monte Carlo (MC) applications bear many implications on the quality and speed of that programs work. As a random number generator (RNG) slows, the production of random numbers begins to dominate runtime. As RNG output grows in correlation, the final product becomes less reliable. These difficulties are further compounded by the need for reproducibility and parallelism. For reproducibility, the numbers generated to determine any outcome must be the same each time a simulation is run. However, the concurrency that comes with most parallelism introduces race conditions. To have both reproducibility and concurrency, separate RNG states must be tracked for each independently schedulable unit of simulation, forming independent random number streams. We propose an alternative to the stride-based parallel LCG seeding approach that scales more practically with increased concurrency and workload by generating seeds through hashing and allowing for repeated outputs. Data gathered from normality tests of tally results from simple MC transport benchmark calculations indicates that the proposed hash-based RNG does not significantly affect the tally result normality property as compared to the conventional stride-based RNG.
This work introduces a flexible and versatile method for the data-efficient yet conservative transmission of covariance matrices, where a matrix element is only transmitted if a so-called triggering condition is satisfied for the element. Here, triggering conditions can be parametrized on a per-element basis, applied simultaneously to yield combined triggering conditions or applied only to certain subsets of elements. This allows, e.g., to specify transmission accuracies for individual elements or to constrain the bandwidth available for the transmission of subsets of elements. Additionally, a methodology for learning triggering condition parameters from an application-specific dataset is presented. The performance of the proposed approach is quantitatively assessed in terms of data reduction and conservativeness using estimate data derived from real-world vehicle trajectories from the InD-dataset, demonstrating substantial data reduction ratios with minimal over-conservativeness. The feasibility of learning triggering condition parameters is demonstrated.
This study explores the application of the rate-splitting multiple access (RSMA) technique, vital for interference mitigation in modern communication systems. It investigates the use of precoding methods in RSMA, especially in complex multiple-antenna interference channels, employing deep reinforcement learning. The aim is to optimize precoders and power allocation for common and private data streams involving multiple decision-makers. A multi-agent deep deterministic policy gradient (MADDPG) framework is employed to address this complexity, where decentralized agents collectively learn to optimize actions in a continuous policy space. We also explore the challenges posed by imperfect channel side information at the transmitter. Additionally, decoding order estimation is addressed to determine the optimal decoding sequence for common and private data sequences. Simulation results demonstrate the effectiveness of the proposed RSMA method based on MADDPG, achieving the upper bound in single-antenna scenarios and closely approaching theoretical limits in multi-antenna scenarios. Comparative analysis shows superiority over other techniques such as MADDPG without rate-splitting, maximal ratio transmission (MRT), zero-forcing (ZF), and leakage-based precoding methods. These findings highlight the potential of deep reinforcement learning-driven RSMA in reducing interference and enhancing system performance in communication systems.
We prove a priori and a posteriori error estimates for physics-informed neural networks (PINNs) for linear PDEs. We analyze elliptic equations in primal and mixed form, elasticity, parabolic, hyperbolic and Stokes equations; and a PDE constrained optimization problem. For the analysis, we propose an abstract framework in the common language of bilinear forms, and we show that coercivity and continuity lead to error estimates. The obtained estimates are sharp and reveal that the $L^2$ penalty approach for initial and boundary conditions in the PINN formulation weakens the norm of the error decay. Finally, utilizing recent advances in PINN optimization, we present numerical examples that illustrate the ability of the method to achieve accurate solutions.
Graph Neural Networks (GNNs) have received considerable attention on graph-structured data learning for a wide variety of tasks. The well-designed propagation mechanism which has been demonstrated effective is the most fundamental part of GNNs. Although most of GNNs basically follow a message passing manner, litter effort has been made to discover and analyze their essential relations. In this paper, we establish a surprising connection between different propagation mechanisms with a unified optimization problem, showing that despite the proliferation of various GNNs, in fact, their proposed propagation mechanisms are the optimal solution optimizing a feature fitting function over a wide class of graph kernels with a graph regularization term. Our proposed unified optimization framework, summarizing the commonalities between several of the most representative GNNs, not only provides a macroscopic view on surveying the relations between different GNNs, but also further opens up new opportunities for flexibly designing new GNNs. With the proposed framework, we discover that existing works usually utilize naive graph convolutional kernels for feature fitting function, and we further develop two novel objective functions considering adjustable graph kernels showing low-pass or high-pass filtering capabilities respectively. Moreover, we provide the convergence proofs and expressive power comparisons for the proposed models. Extensive experiments on benchmark datasets clearly show that the proposed GNNs not only outperform the state-of-the-art methods but also have good ability to alleviate over-smoothing, and further verify the feasibility for designing GNNs with our unified optimization framework.
We introduce a multi-task setup of identifying and classifying entities, relations, and coreference clusters in scientific articles. We create SciERC, a dataset that includes annotations for all three tasks and develop a unified framework called Scientific Information Extractor (SciIE) for with shared span representations. The multi-task setup reduces cascading errors between tasks and leverages cross-sentence relations through coreference links. Experiments show that our multi-task model outperforms previous models in scientific information extraction without using any domain-specific features. We further show that the framework supports construction of a scientific knowledge graph, which we use to analyze information in scientific literature.