Underground forums serve as hubs for cybercriminal activities, offering a space for anonymity and evasion of conventional online oversight. In these hidden communities, malicious actors collaborate to exchange illicit knowledge, tools, and tactics, driving a range of cyber threats from hacking techniques to the sale of stolen data, malware, and zero-day exploits. Identifying the key instigators (i.e., key hackers), behind these operations is essential but remains a complex challenge. This paper presents a novel method called EUREKHA (Enhancing User Representation for Key Hacker Identification in Underground Forums), designed to identify these key hackers by modeling each user as a textual sequence. This sequence is processed through a large language model (LLM) for domain-specific adaptation, with LLMs acting as feature extractors. These extracted features are then fed into a Graph Neural Network (GNN) to model user structural relationships, significantly improving identification accuracy. Furthermore, we employ BERTopic (Bidirectional Encoder Representations from Transformers Topic Modeling) to extract personalized topics from user-generated content, enabling multiple textual representations per user and optimizing the selection of the most representative sequence. Our study demonstrates that fine-tuned LLMs outperform state-of-the-art methods in identifying key hackers. Additionally, when combined with GNNs, our model achieves significant improvements, resulting in approximately 6% and 10% increases in accuracy and F1-score, respectively, over existing methods. EUREKHA was tested on the Hack-Forums dataset, and we provide open-source access to our code.
Promptable segmentation foundation models have emerged as a transformative approach to addressing the diverse needs in medical images, but most existing models require expensive computing, posing a big barrier to their adoption in clinical practice. In this work, we organized the first international competition dedicated to promptable medical image segmentation, featuring a large-scale dataset spanning nine common imaging modalities from over 20 different institutions. The top teams developed lightweight segmentation foundation models and implemented an efficient inference pipeline that substantially reduced computational requirements while maintaining state-of-the-art segmentation accuracy. Moreover, the post-challenge phase advanced the algorithms through the design of performance booster and reproducibility tasks, resulting in improved algorithms and validated reproducibility of the winning solution. Furthermore, the best-performing algorithms have been incorporated into the open-source software with a user-friendly interface to facilitate clinical adoption. The data and code are publicly available to foster the further development of medical image segmentation foundation models and pave the way for impactful real-world applications.
Recent advances in LLMs, particularly in language reasoning and tool integration, have rapidly sparked the real-world development of Language Agents. Among these, travel planning represents a prominent domain, combining academic challenges with practical value due to its complexity and market demand. However, existing benchmarks fail to reflect the diverse, real-world requirements crucial for deployment. To address this gap, we introduce ChinaTravel, a benchmark specifically designed for authentic Chinese travel planning scenarios. We collect the travel requirements from questionnaires and propose a compositionally generalizable domain-specific language that enables a scalable evaluation process, covering feasibility, constraint satisfaction, and preference comparison. Empirical studies reveal the potential of neuro-symbolic agents in travel planning, achieving a constraint satisfaction rate of 27.9%, significantly surpassing purely neural models at 2.6%. Moreover, we identify key challenges in real-world travel planning deployments, including open language reasoning and unseen concept composition. These findings highlight the significance of ChinaTravel as a pivotal milestone for advancing language agents in complex, real-world planning scenarios.
Current discriminative depth estimation methods often produce blurry artifacts, while generative approaches suffer from slow sampling due to curvatures in the noise-to-depth transport. Our method addresses these challenges by framing depth estimation as a direct transport between image and depth distributions. We are the first to explore flow matching in this field, and we demonstrate that its interpolation trajectories enhance both training and sampling efficiency while preserving high performance. While generative models typically require extensive training data, we mitigate this dependency by integrating external knowledge from a pre-trained image diffusion model, enabling effective transfer even across differing objectives. To further boost our model performance, we employ synthetic data and utilize image-depth pairs generated by a discriminative model on an in-the-wild image dataset. As a generative model, our model can reliably estimate depth confidence, which provides an additional advantage. Our approach achieves competitive zero-shot performance on standard benchmarks of complex natural scenes while improving sampling efficiency and only requiring minimal synthetic data for training.
Diffusion models, particularly latent diffusion models, have demonstrated remarkable success in text-driven human motion generation. However, it remains challenging for latent diffusion models to effectively compose multiple semantic concepts into a single, coherent motion sequence. To address this issue, we propose EnergyMoGen, which includes two spectrums of Energy-Based Models: (1) We interpret the diffusion model as a latent-aware energy-based model that generates motions by composing a set of diffusion models in latent space; (2) We introduce a semantic-aware energy model based on cross-attention, which enables semantic composition and adaptive gradient descent for text embeddings. To overcome the challenges of semantic inconsistency and motion distortion across these two spectrums, we introduce Synergistic Energy Fusion. This design allows the motion latent diffusion model to synthesize high-quality, complex motions by combining multiple energy terms corresponding to textual descriptions. Experiments show that our approach outperforms existing state-of-the-art models on various motion generation tasks, including text-to-motion generation, compositional motion generation, and multi-concept motion generation. Additionally, we demonstrate that our method can be used to extend motion datasets and improve the text-to-motion task.
Data races are critical issues in multithreaded program, leading to unpredictable, catastrophic and difficult-to-diagnose problems. Despite the extensive in-house testing, data races often escape to deployed software and manifest in production runs. Existing approaches suffer from either prohibitively high runtime overhead or incomplete detection capability. In this paper, we introduce HardRace, a data race monitor to detect races on-the-fly while with sufficiently low runtime overhead and high detection capability. HardRace firstly employs sound static analysis to determine a minimal set of essential memory accesses relevant to data races. It then leverages hardware trace instruction, i.e., Intel PTWRITE, to selectively record only these memory accesses and thread synchronization events during execution with negligible runtime overhead. Given the tracing data, HardRace performs standard data race detection algorithms to timely report potential races occurred in production runs. The experimental evaluations show that HardRace outperforms state-of-the-art tools like ProRace and Kard in terms of both runtime overhead and detection capability -- HardRace can detect all kinds of data races in read-world applications while maintaining a negligible overhead, less than 2% on average.
Recent advancements in large language models (LLMs) have significantly enhanced their ability to understand both natural language and code, driving their use in tasks like natural language-to-code (NL2Code) and code summarization. However, LLMs are prone to hallucination-outputs that stray from intended meanings. Detecting hallucinations in code summarization is especially difficult due to the complex interplay between programming and natural languages. We introduce a first-of-its-kind dataset with $\sim$10K samples, curated specifically for hallucination detection in code summarization. We further propose a novel Entity Tracing Framework (ETF) that a) utilizes static program analysis to identify code entities from the program and b) uses LLMs to map and verify these entities and their intents within generated code summaries. Our experimental analysis demonstrates the effectiveness of the framework, leading to a 0.73 F1 score. This approach provides an interpretable method for detecting hallucinations by grounding entities, allowing us to evaluate summary accuracy.
Multimodal multihop question answering is a complex task that requires reasoning over multiple sources of information, such as images and text, to answer questions. While there has been significant progress in visual question answering, the multihop setting remains unexplored due to the lack of high-quality datasets. Current methods focus on single-hop question answering or a single modality, which makes them unsuitable for real-world scenarios such as analyzing multimodal educational materials, summarizing lengthy academic articles, or interpreting scientific studies that combine charts, images, and text. To address this gap, we propose a novel methodology, introducing the first framework for creating a high-quality dataset that enables training models for multimodal multihop question answering. Our approach consists of a 5-stage pipeline that involves acquiring relevant multimodal documents from Wikipedia, synthetically generating high-level questions and answers, and validating them through rigorous criteria to ensure quality data. We evaluate our methodology by training models on our synthesized dataset and testing on two benchmarks, our results demonstrate that, with an equal sample size, models trained on our synthesized data outperform those trained on human-collected data by 1.9 in exact match (EM) on average. We believe our data synthesis method will serve as a strong foundation for training and evaluating multimodal multihop question answering models.
The effective training and evaluation of retrieval systems require a substantial amount of relevance judgments, which are traditionally collected from human assessors -- a process that is both costly and time-consuming. Large Language Models (LLMs) have shown promise in generating relevance labels for search tasks, offering a potential alternative to manual assessments. Current approaches often rely on a single LLM, such as GPT-4, which, despite being effective, are expensive and prone to intra-model biases that can favour systems leveraging similar models. In this work, we introduce JudgeBlender, a framework that employs smaller, open-source models to provide relevance judgments by combining evaluations across multiple LLMs (LLMBlender) or multiple prompts (PromptBlender). By leveraging the LLMJudge benchmark [18], we compare JudgeBlender with state-of-the-art methods and the top performers in the LLMJudge challenge. Our results show that JudgeBlender achieves competitive performance, demonstrating that very large models are often unnecessary for reliable relevance assessments.
Distant supervision can effectively label data for relation extraction, but suffers from the noise labeling problem. Recent works mainly perform soft bag-level noise reduction strategies to find the relatively better samples in a sentence bag, which is suboptimal compared with making a hard decision of false positive samples in sentence level. In this paper, we introduce an adversarial learning framework, which we named DSGAN, to learn a sentence-level true-positive generator. Inspired by Generative Adversarial Networks, we regard the positive samples generated by the generator as the negative samples to train the discriminator. The optimal generator is obtained until the discrimination ability of the discriminator has the greatest decline. We adopt the generator to filter distant supervision training dataset and redistribute the false positive instances into the negative set, in which way to provide a cleaned dataset for relation classification. The experimental results show that the proposed strategy significantly improves the performance of distant supervision relation extraction comparing to state-of-the-art systems.
In order to answer natural language questions over knowledge graphs, most processing pipelines involve entity and relation linking. Traditionally, entity linking and relation linking has been performed either as dependent sequential tasks or independent parallel tasks. In this paper, we propose a framework called "EARL", which performs entity linking and relation linking as a joint single task. EARL uses a graph connection based solution to the problem. We model the linking task as an instance of the Generalised Travelling Salesman Problem (GTSP) and use GTSP approximate algorithm solutions. We later develop EARL which uses a pair-wise graph-distance based solution to the problem.The system determines the best semantic connection between all keywords of the question by referring to a knowledge graph. This is achieved by exploiting the "connection density" between entity candidates and relation candidates. The "connection density" based solution performs at par with the approximate GTSP solution.We have empirically evaluated the framework on a dataset with 5000 questions. Our system surpasses state-of-the-art scores for entity linking task by reporting an accuracy of 0.65 to 0.40 from the next best entity linker.