亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We introduce PaLEnTIR, a significantly enhanced parametric level-set (PaLS) method addressing the restoration and reconstruction of piecewise constant objects. Our key contribution involves a unique PaLS formulation utilizing a single level-set function to restore scenes containing multi-contrast piecewise-constant objects without requiring knowledge of the number of objects or their contrasts. Unlike standard PaLS methods employing radial basis functions (RBFs), our model integrates anisotropic basis functions (ABFs), thereby expanding its capacity to represent a wider class of shapes. Furthermore, PaLEnTIR improves the conditioning of the Jacobian matrix, required as part of the parameter identification process, and consequently accelerates optimization methods. We validate PaLEnTIR's efficacy through diverse experiments encompassing sparse and limited angle of view X-ray computed tomography (2D and 3D), nonlinear diffuse optical tomography (DOT), denoising, and deconvolution tasks using both real and simulated data sets.

相關內容

Wireless spectrum regulation is a complex and demanding process due to the rapid pace of technological progress, increasing demand for spectrum, and a multitude of stakeholders with potentially conflicting interests, alongside significant economic implications. To navigate this, regulators must engage effectively with all parties, keep pace with global technology trends, conduct technical evaluations, issue licenses in a timely manner, and comply with various legal and policy frameworks. In light of these challenges, this paper demonstrates example applications of Large Language Models (LLMs) to expedite spectrum regulatory processes. We explore various roles that LLMs can play in this context while identifying some of the challenges to address. The paper also offers practical case studies and insights, with appropriate experiments, highlighting the transformative potential of LLMs in spectrum management.

We propose a text-guided variational image generation method to address the challenge of getting clean data for anomaly detection in industrial manufacturing. Our method utilizes text information about the target object, learned from extensive text library documents, to generate non-defective data images resembling the input image. The proposed framework ensures that the generated non-defective images align with anticipated distributions derived from textual and image-based knowledge, ensuring stability and generality. Experimental results demonstrate the effectiveness of our approach, surpassing previous methods even with limited non-defective data. Our approach is validated through generalization tests across four baseline models and three distinct datasets. We present an additional analysis to enhance the effectiveness of anomaly detection models by utilizing the generated images.

Recently, significant progress has been achieved in sensing real large-scale outdoor 3D environments, particularly by using modern acquisition equipment such as LiDAR sensors. Unfortunately, they are fundamentally limited in their ability to produce dense, complete 3D scenes. To address this issue, recent learning-based methods integrate neural implicit representations and optimizable feature grids to approximate surfaces of 3D scenes. However, naively fitting samples along raw LiDAR rays leads to noisy 3D mapping results due to the nature of sparse, conflicting LiDAR measurements. Instead, in this work we depart from fitting LiDAR data exactly, instead letting the network optimize a non-metric monotonic implicit field defined in 3D space. To fit our field, we design a learning system integrating a monotonicity loss that enables optimizing neural monotonic fields and leverages recent progress in large-scale 3D mapping. Our algorithm achieves high-quality dense 3D mapping performance as captured by multiple quantitative and perceptual measures and visual results obtained for Mai City, Newer College, and KITTI benchmarks. The code of our approach will be made publicly available.

Spiking Transformers, which integrate Spiking Neural Networks (SNNs) with Transformer architectures, have attracted significant attention due to their potential for energy efficiency and high performance. However, existing models in this domain still suffer from suboptimal performance. We introduce several innovations to improve the performance: i) We propose a novel spike-form Q-K attention mechanism, tailored for SNNs, which efficiently models the importance of token or channel dimensions through binary vectors with linear complexity. ii) We incorporate the hierarchical structure, which significantly benefits the performance of both the brain and artificial neural networks, into spiking transformers to obtain multi-scale spiking representation. iii) We design a versatile and powerful patch embedding module with a deformed shortcut specifically for spiking transformers. Together, we develop QKFormer, a hierarchical spiking transformer based on Q-K attention with direct training. QKFormer shows significantly superior performance over existing state-of-the-art SNN models on various mainstream datasets. Notably, with comparable size to Spikformer (66.34 M, 74.81%), QKFormer (64.96 M) achieves a groundbreaking top-1 accuracy of 85.65% on ImageNet-1k, substantially outperforming Spikformer by 10.84%. To our best knowledge, this is the first time that directly training SNNs have exceeded 85% accuracy on ImageNet-1K. The code and models are publicly available at //github.com/zhouchenlin2096/QKFormer

Emerging workloads in high-performance computing (HPC) are embracing significant changes, such as having diverse resource requirements instead of being CPU-centric. This advancement forces cluster schedulers to consider multiple schedulable resources during decision-making. Existing scheduling studies rely on heuristic or optimization methods, which are limited by an inability to adapt to new scenarios for ensuring long-term scheduling performance. We present an intelligent scheduling agent named MRSch for multi-resource scheduling in HPC that leverages direct future prediction (DFP), an advanced multi-objective reinforcement learning algorithm. While DFP demonstrated outstanding performance in a gaming competition, it has not been previously explored in the context of HPC scheduling. Several key techniques are developed in this study to tackle the challenges involved in multi-resource scheduling. These techniques enable MRSch to learn an appropriate scheduling policy automatically and dynamically adapt its policy in response to workload changes via dynamic resource prioritizing. We compare MRSch with existing scheduling methods through extensive tracebase simulations. Our results demonstrate that MRSch improves scheduling performance by up to 48% compared to the existing scheduling methods.

Exoskeleton locomotion must be robust while being adaptive to different users with and without payloads. To address these challenges, this work introduces a data-driven predictive control (DDPC) framework to synthesize walking gaits for lower-body exoskeletons, employing Hankel matrices and a state transition matrix for its data-driven model. The proposed approach leverages DDPC through a multi-layer architecture. At the top layer, DDPC serves as a planner employing Hankel matrices and a state transition matrix to generate a data-driven model that can learn and adapt to varying users and payloads. At the lower layer, our method incorporates inverse kinematics and passivity-based control to map the planned trajectory from DDPC into the full-order states of the lower-body exoskeleton. We validate the effectiveness of this approach through numerical simulations and hardware experiments conducted on the Atalante lower-body exoskeleton with different payloads. Moreover, we conducted a comparative analysis against the model predictive control (MPC) framework based on the reduced-order linear inverted pendulum (LIP) model. Through this comparison, the paper demonstrates that DDPC enables robust bipedal walking at various velocities while accounting for model uncertainties and unknown perturbations.

We introduce DragAPart, a method that, given an image and a set of drags as input, can generate a new image of the same object in a new state, compatible with the action of the drags. Differently from prior works that focused on repositioning objects, DragAPart predicts part-level interactions, such as opening and closing a drawer. We study this problem as a proxy for learning a generalist motion model, not restricted to a specific kinematic structure or object category. To this end, we start from a pre-trained image generator and fine-tune it on a new synthetic dataset, Drag-a-Move, which we introduce. Combined with a new encoding for the drags and dataset randomization, the new model generalizes well to real images and different categories. Compared to prior motion-controlled generators, we demonstrate much better part-level motion understanding.

Core computations in Graph Neural Network (GNN) training and inference are often mapped to sparse matrix operations such as sparse-dense matrix multiplication (SpMM). These sparse operations are harder to optimize by manual tuning because their performance depends significantly on the sparsity of input graphs, GNN models, and computing platforms. To address this challenge, we present iSpLib, a PyTorch-based C++ library equipped with auto-tuned sparse operations. iSpLib expedites GNN training with a cache-enabled backpropagation that stores intermediate matrices in local caches. The library offers a user-friendly Python plug-in that allows users to take advantage of our optimized PyTorch operations out-of-the-box for any existing linear algebra-based PyTorch implementation of popular GNNs (Graph Convolution Network, GraphSAGE, Graph Inference Network, etc.) with only two lines of additional code. We demonstrate that iSpLib obtains up to 27x overall training speedup compared to the equivalent PyTorch 2.1.0 and PyTorch Geometric 2.4.0 implementations on the CPU. Our library is publicly available at //github.com/HipGraph/iSpLib (//doi.org/10.5281/zenodo.10806511).

Conventional entity typing approaches are based on independent classification paradigms, which make them difficult to recognize inter-dependent, long-tailed and fine-grained entity types. In this paper, we argue that the implicitly entailed extrinsic and intrinsic dependencies between labels can provide critical knowledge to tackle the above challenges. To this end, we propose \emph{Label Reasoning Network(LRN)}, which sequentially reasons fine-grained entity labels by discovering and exploiting label dependencies knowledge entailed in the data. Specifically, LRN utilizes an auto-regressive network to conduct deductive reasoning and a bipartite attribute graph to conduct inductive reasoning between labels, which can effectively model, learn and reason complex label dependencies in a sequence-to-set, end-to-end manner. Experiments show that LRN achieves the state-of-the-art performance on standard ultra fine-grained entity typing benchmarks, and can also resolve the long tail label problem effectively.

Most existing event extraction (EE) methods merely extract event arguments within the sentence scope. However, such sentence-level EE methods struggle to handle soaring amounts of documents from emerging applications, such as finance, legislation, health, etc., where event arguments always scatter across different sentences, and even multiple such event mentions frequently co-exist in the same document. To address these challenges, we propose a novel end-to-end model, Doc2EDAG, which can generate an entity-based directed acyclic graph to fulfill the document-level EE (DEE) effectively. Moreover, we reformalize a DEE task with the no-trigger-words design to ease the document-level event labeling. To demonstrate the effectiveness of Doc2EDAG, we build a large-scale real-world dataset consisting of Chinese financial announcements with the challenges mentioned above. Extensive experiments with comprehensive analyses illustrate the superiority of Doc2EDAG over state-of-the-art methods. Data and codes can be found at //github.com/dolphin-zs/Doc2EDAG.

北京阿比特科技有限公司