亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Harmonic potentials provide globally convergent potential fields that are provably free of local minima. Due to its analytical format, it is particularly suitable for generating safe and reliable robot navigation policies. However, for complex environments that consist of a large number of overlapping non-sphere obstacles, the computation of associated transformation functions can be tedious. This becomes more apparent when: (i) the workspace is initially unknown and the underlying potential fields are updated constantly as the robot explores it; (ii) the high-level mission consists of sequential navigation tasks among numerous regions, requiring the robot to switch between different potentials. Thus, this work proposes an efficient and automated scheme to construct harmonic potentials incrementally online as guided by the task automaton. A novel two-layer harmonic tree (HT) structure is introduced that facilitates the hybrid combination of oriented search algorithms for task planning and harmonic-based navigation controllers for non-holonomic robots. Both layers are adapted efficiently and jointly during online execution to reflect the actual feasibility and cost of navigation within the updated workspace. Global safety and convergence are ensured both for the high-level task plan and the low-level robot trajectory. Known issues such as oscillation or long-detours for purely potential-based methods and sharp-turns or high computation complexity for purely search-based methods are prevented. Extensive numerical simulation and hardware experiments are conducted against several strong baselines.

相關內容

Bilevel optimization problems, which are problems where two optimization problems are nested, have more and more applications in machine learning. In many practical cases, the upper and the lower objectives correspond to empirical risk minimization problems and therefore have a sum structure. In this context, we propose a bilevel extension of the celebrated SARAH algorithm. We demonstrate that the algorithm requires $\mathcal{O}((n+m)^{\frac12}\varepsilon^{-1})$ gradient computations to achieve $\varepsilon$-stationarity with $n+m$ the total number of samples, which improves over all previous bilevel algorithms. Moreover, we provide a lower bound on the number of oracle calls required to get an approximate stationary point of the objective function of the bilevel problem. This lower bound is attained by our algorithm, which is therefore optimal in terms of sample complexity.

To fully exploit the benefits of the fog environment, efficient management of data locality is crucial. Blind or reactive data replication falls short in harnessing the potential of fog computing, necessitating more advanced techniques for predicting where and when clients will connect. While spatial prediction has received considerable attention, temporal prediction remains understudied. Our paper addresses this gap by examining the advantages of incorporating temporal prediction into existing spatial prediction models. We also provide a comprehensive analysis of spatio-temporal prediction models, such as Deep Neural Networks and Markov models, in the context of predictive replication. We propose a novel model using Holt-Winter's Exponential Smoothing for temporal prediction, leveraging sequential and periodical user movement patterns. In a fog network simulation with real user trajectories our model achieves a 15% reduction in excess data with a marginal 1% decrease in data availability.

Machine learning models are widely used but can also often be wrong. Users would benefit from a reliable indication of whether a given output from a given model should be trusted, so a rational decision can be made whether to use the output or not. For example, outputs can be associated with a confidence measure; if this confidence measure is strongly associated with likelihood of correctness, then the model is said to be well-calibrated. In this case, for example, high-confidence outputs could be safely accepted, and low-confidence outputs rejected. Calibration has so far been studied in mostly non-generative (e.g., classification) settings, especially in Software Engineering. However, generated code can quite often be wrong: Developers need to know when they should e.g., directly use, use after careful review, or discard model-generated code; thus Calibration is vital in generative settings. However, the notion of correctness of generated code is non-trivial, and thus so is Calibration. In this paper we make several contributions. We develop a framework for evaluating the Calibration of code-generating models. We consider several tasks, correctness criteria, datasets, and approaches, and find that by and large generative code models are not well-calibrated out of the box. We then show how Calibration can be improved, using standard methods such as Platt scaling. Our contributions will lead to better-calibrated decision-making in the current use of code generated by language models, and offers a framework for future research to further improve calibration methods for generative models in Software Engineering.

Gradient methods are experiencing a growth in methodological and theoretical developments owing to the challenges of optimization problems arising in data science. Focusing on data science applications with expensive objective function evaluations yet inexpensive gradient function evaluations, gradient methods that never make objective function evaluations are either being rejuvenated or actively developed. However, as we show, such gradient methods are all susceptible to catastrophic divergence under realistic conditions for data science applications. In light of this, gradient methods which make use of objective function evaluations become more appealing, yet, as we show, can result in an exponential increase in objective evaluations between accepted iterates. As a result, existing gradient methods are poorly suited to the needs of optimization problems arising from data science. In this work, we address this gap by developing a generic methodology that economically uses objective function evaluations in a problem-driven manner to prevent catastrophic divergence and avoid an explosion in objective evaluations between accepted iterates. Our methodology allows for specific procedures that can make use of specific step size selection methodologies or search direction strategies, and we develop a novel step size selection methodology that is well-suited to data science applications. We show that a procedure resulting from our methodology is highly competitive with standard optimization methods on CUTEst test problems. We then show a procedure resulting from our methodology is highly favorable relative to standard optimization methods on optimization problems arising in our target data science applications. Thus, we provide a novel gradient methodology that is better suited to optimization problems arising in data science.

The objective of the KPR agents are to learn themselves in the minimum (learning) time to have maximum success or utilization probability ($f$). A dictator can easily solve the problem with $f = 1$ in no time, by asking every one to form a queue and go to the respective restaurant, resulting in no fluctuation and full utilization from the first day (convergence time $\tau = 0$). It has already been shown that if each agent chooses randomly the restaurants, $f = 1 - e^{-1} \simeq 0.63$ (where $e \simeq 2.718$ denotes the Euler number) in zero time ($\tau = 0$). With the only available information about yesterday's crowd size in the restaurant visited by the agent (as assumed for the rest of the strategies studied here), the crowd avoiding (CA) strategies can give higher values of $f$ but also of $\tau$. Several numerical studies of modified learning strategies actually indicated increased value of $f = 1 - \alpha$ for $\alpha \to 0$, with $\tau \sim 1/\alpha$. We show here using Monte Carlo technique, a modified Greedy Crowd Avoiding (GCA) Strategy can assure full utilization ($f = 1$) in convergence time $\tau \simeq eN$, with of course non-zero probability for an even larger convergence time. All these observations suggest that the strategies with single step memory of the individuals can never collectively achieve full utilization ($f = 1$) in finite convergence time and perhaps the maximum possible utilization that can be achieved is about eighty percent ($f \simeq 0.80$) in an optimal time $\tau$ of order ten, even when $N$ the number of customers or of the restaurants goes to infinity.

We provide a quantitative assessment of welfare in the classical model of risk-sharing and exchange under uncertainty. We prove three kinds of results. First, that in an equilibrium allocation, the scope for improving individual welfare by a given margin (an $\varepsilon$-improvement) vanishes as the number of states increases. Second, that the scope for a change in aggregate resources that may be distributed to enhance individual welfare by a given margin also vanishes. Equivalently: in an inefficient allocation, for a given level of resource sub-optimality (as measured by the coefficient of resource under-utilization), the possibilities for enhancing welfare by perturbing aggregate resources decrease exponentially to zero with the number of states. Finally, we consider efficient risk-sharing in standard models of uncertainty aversion with multiple priors, and show that, in an inefficient allocation, certain sets of priors shrink with the size of the state space.

Graphs are important data representations for describing objects and their relationships, which appear in a wide diversity of real-world scenarios. As one of a critical problem in this area, graph generation considers learning the distributions of given graphs and generating more novel graphs. Owing to their wide range of applications, generative models for graphs, which have a rich history, however, are traditionally hand-crafted and only capable of modeling a few statistical properties of graphs. Recent advances in deep generative models for graph generation is an important step towards improving the fidelity of generated graphs and paves the way for new kinds of applications. This article provides an extensive overview of the literature in the field of deep generative models for graph generation. Firstly, the formal definition of deep generative models for the graph generation and the preliminary knowledge are provided. Secondly, taxonomies of deep generative models for both unconditional and conditional graph generation are proposed respectively; the existing works of each are compared and analyzed. After that, an overview of the evaluation metrics in this specific domain is provided. Finally, the applications that deep graph generation enables are summarized and five promising future research directions are highlighted.

A community reveals the features and connections of its members that are different from those in other communities in a network. Detecting communities is of great significance in network analysis. Despite the classical spectral clustering and statistical inference methods, we notice a significant development of deep learning techniques for community detection in recent years with their advantages in handling high dimensional network data. Hence, a comprehensive overview of community detection's latest progress through deep learning is timely to both academics and practitioners. This survey devises and proposes a new taxonomy covering different categories of the state-of-the-art methods, including deep learning-based models upon deep neural networks, deep nonnegative matrix factorization and deep sparse filtering. The main category, i.e., deep neural networks, is further divided into convolutional networks, graph attention networks, generative adversarial networks and autoencoders. The survey also summarizes the popular benchmark data sets, model evaluation metrics, and open-source implementations to address experimentation settings. We then discuss the practical applications of community detection in various domains and point to implementation scenarios. Finally, we outline future directions by suggesting challenging topics in this fast-growing deep learning field.

Graph Neural Networks (GNNs) have recently become increasingly popular due to their ability to learn complex systems of relations or interactions arising in a broad spectrum of problems ranging from biology and particle physics to social networks and recommendation systems. Despite the plethora of different models for deep learning on graphs, few approaches have been proposed thus far for dealing with graphs that present some sort of dynamic nature (e.g. evolving features or connectivity over time). In this paper, we present Temporal Graph Networks (TGNs), a generic, efficient framework for deep learning on dynamic graphs represented as sequences of timed events. Thanks to a novel combination of memory modules and graph-based operators, TGNs are able to significantly outperform previous approaches being at the same time more computationally efficient. We furthermore show that several previous models for learning on dynamic graphs can be cast as specific instances of our framework. We perform a detailed ablation study of different components of our framework and devise the best configuration that achieves state-of-the-art performance on several transductive and inductive prediction tasks for dynamic graphs.

Incompleteness is a common problem for existing knowledge graphs (KGs), and the completion of KG which aims to predict links between entities is challenging. Most existing KG completion methods only consider the direct relation between nodes and ignore the relation paths which contain useful information for link prediction. Recently, a few methods take relation paths into consideration but pay less attention to the order of relations in paths which is important for reasoning. In addition, these path-based models always ignore nonlinear contributions of path features for link prediction. To solve these problems, we propose a novel KG completion method named OPTransE. Instead of embedding both entities of a relation into the same latent space as in previous methods, we project the head entity and the tail entity of each relation into different spaces to guarantee the order of relations in the path. Meanwhile, we adopt a pooling strategy to extract nonlinear and complex features of different paths to further improve the performance of link prediction. Experimental results on two benchmark datasets show that the proposed model OPTransE performs better than state-of-the-art methods.

北京阿比特科技有限公司