Motivated by the current global high inflation scenario, we aim to discover a dynamic multi-period allocation strategy to optimally outperform a passive benchmark while adhering to a bounded leverage limit. To this end, we formulate an optimal control problem to outperform a benchmark portfolio throughout the investment horizon. Assuming the asset prices follow the jump-diffusion model during high inflation periods, we first establish a closed-form solution for the optimal strategy that outperforms a passive strategy under the cumulative quadratic tracking difference (CD) objective, assuming continuous trading and no bankruptcy. To obtain strategies under the bounded leverage constraint among other realistic constraints, we then propose a novel leverage-feasible neural network (LFNN) to represent control, which converts the original constrained optimization problem into an unconstrained optimization problem that is computationally feasible with standard optimization methods. We establish mathematically that the LFNN approximation can yield a solution that is arbitrarily close to the solution of the original optimal control problem with bounded leverage. We further apply the LFNN approach to a four-asset investment scenario with bootstrap resampled asset returns from the filtered high inflation regime data. The LFNN strategy is shown to consistently outperform the passive benchmark strategy by about 200 bps (median annualized return), with a greater than 90% probability of outperforming the benchmark at the end of the investment horizon.
Delays and asynchrony are inevitable in large-scale machine-learning problems where communication plays a key role. As such, several works have extensively analyzed stochastic optimization with delayed gradients. However, as far as we are aware, no analogous theory is available for min-max optimization, a topic that has gained recent popularity due to applications in adversarial robustness, game theory, and reinforcement learning. Motivated by this gap, we examine the performance of standard min-max optimization algorithms with delayed gradient updates. First, we show (empirically) that even small delays can cause prominent algorithms like Extra-gradient (\texttt{EG}) to diverge on simple instances for which \texttt{EG} guarantees convergence in the absence of delays. Our empirical study thus suggests the need for a careful analysis of delayed versions of min-max optimization algorithms. Accordingly, under suitable technical assumptions, we prove that Gradient Descent-Ascent (\texttt{GDA}) and \texttt{EG} with delayed updates continue to guarantee convergence to saddle points for convex-concave and strongly convex-strongly concave settings. Our complexity bounds reveal, in a transparent manner, the slow-down in convergence caused by delays.
We consider stochastic optimization problems where data is drawn from a Markov chain. Existing methods for this setting crucially rely on knowing the mixing time of the chain, which in real-world applications is usually unknown. We propose the first optimization method that does not require the knowledge of the mixing time, yet obtains the optimal asymptotic convergence rate when applied to convex problems. We further show that our approach can be extended to: (i) finding stationary points in non-convex optimization with Markovian data, and (ii) obtaining better dependence on the mixing time in temporal difference (TD) learning; in both cases, our method is completely oblivious to the mixing time. Our method relies on a novel combination of multi-level Monte Carlo (MLMC) gradient estimation together with an adaptive learning method.
Standard multiparameter eigenvalue problems (MEPs) are systems of $k\ge 2$ linear $k$-parameter square matrix pencils. Recently, a new form of multiparameter eigenvalue problems has emerged: a rectangular MEP (RMEP) with only one multivariate rectangular matrix pencil, where we are looking for combinations of the parameters for which the rank of the pencil is not full. Applications include finding the optimal least squares autoregressive moving average (ARMA) model and the optimal least squares realization of autonomous linear time-invariant (LTI) dynamical system. For linear and polynomial RMEPs, we give the number of solutions and show how these problems can be solved numerically by a transformation into a standard MEP. For the transformation we provide new linearizations for quadratic multivariate matrix polynomials with a specific structure of monomials and consider mixed systems of rectangular and square multivariate matrix polynomials. This numerical approach seems computationally considerably more attractive than the block Macaulay method, the only other currently available numerical method for polynomial RMEPs.
We propose a general framework for obtaining probabilistic solutions to PDE-based inverse problems. Bayesian methods are attractive for uncertainty quantification but assume knowledge of the likelihood model or data generation process. This assumption is difficult to justify in many inverse problems, where the specification of the data generation process is not obvious. We adopt a Gibbs posterior framework that directly posits a regularized variational problem on the space of probability distributions of the parameter. We propose a novel model comparison framework that evaluates the optimality of a given loss based on its ''predictive performance''. We provide cross-validation procedures to calibrate the regularization parameter of the variational objective and compare multiple loss functions. Some novel theoretical properties of Gibbs posteriors are also presented. We illustrate the utility of our framework via a simulated example, motivated by dispersion-based wave models used to characterize arterial vessels in ultrasound vibrometry.
Uncertainty quantification is an essential task in machine learning - a task in which neural networks (NNs) have traditionally not excelled. This can be a limitation for safety-critical applications, where uncertainty-aware methods like Gaussian processes or Bayesian linear regression are often preferred. Bayesian neural networks are an approach to address this limitation. They assume probability distributions for all parameters and yield distributed predictions. However, training and inference are typically intractable and approximations must be employed. A promising approximation is NNs with Bayesian last layer (BLL). They assume distributed weights only in the last linear layer and yield a normally distributed prediction. NNs with BLL can be seen as a Bayesian linear regression model with learned nonlinear features. To approximate the intractable Bayesian neural network, point estimates of the distributed weights in all but the last layer should be obtained by maximizing the marginal likelihood. This has previously been challenging, as the marginal likelihood is expensive to evaluate in this setting and prohibits direct training through backpropagation. We present a reformulation of the log-marginal likelihood of a NN with BLL which allows for efficient training using backpropagation. Furthermore, we address the challenge of quantifying uncertainty for extrapolation points. We provide a metric to quantify the degree of extrapolation and derive a method to improve the uncertainty quantification for these points. Our methods are derived for the multivariate case and demonstrated in a simulation study, where we compare Bayesian linear regression applied to a previously trained neural network with our proposed algorithm
We study a fundamental problem in optimization under uncertainty. There are $n$ boxes; each box $i$ contains a hidden reward $x_i$. Rewards are drawn i.i.d. from an unknown distribution $\mathcal{D}$. For each box $i$, we see $y_i$, an unbiased estimate of its reward, which is drawn from a Normal distribution with known standard deviation $\sigma_i$ (and an unknown mean $x_i$). Our task is to select a single box, with the goal of maximizing our reward. This problem captures a wide range of applications, e.g. ad auctions, where the hidden reward is the click-through rate of an ad. Previous work in this model [BKMR12] proves that the naive policy, which selects the box with the largest estimate $y_i$, is suboptimal, and suggests a linear policy, which selects the box $i$ with the largest $y_i - c \cdot \sigma_i$, for some $c > 0$. However, no formal guarantees are given about the performance of either policy (e.g., whether their expected reward is within some factor of the optimal policy's reward). In this work, we prove that both the naive policy and the linear policy are arbitrarily bad compared to the optimal policy, even when $\mathcal{D}$ is well-behaved, e.g. has monotone hazard rate (MHR), and even under a "small tail" condition, which requires that not too many boxes have arbitrarily large noise. On the flip side, we propose a simple threshold policy that gives a constant approximation to the reward of a prophet (who knows the realized values $x_1, \dots, x_n$) under the same "small tail" condition. We prove that when this condition is not satisfied, even an optimal clairvoyant policy (that knows $\mathcal{D}$) cannot get a constant approximation to the prophet, even for MHR distributions, implying that our threshold policy is optimal against the prophet benchmark, up to constants.
Deep-learning models for traffic data prediction can have superior performance in modeling complex functions using a multi-layer architecture. However, a major drawback of these approaches is that most of these approaches do not offer forecasts with uncertainty estimates, which are essential for traffic operations and control. Without uncertainty estimates, it is difficult to place any level of trust to the model predictions, and operational strategies relying on overconfident predictions can lead to worsening traffic conditions. In this study, we propose a Bayesian recurrent neural network framework for uncertainty quantification in traffic prediction with higher generalizability by introducing spectral normalization to its hidden layers. In our paper, we have shown that normalization alters the training process of deep neural networks by controlling the model's complexity and reducing the risk of overfitting to the training data. This, in turn, helps improve the generalization performance of the model on out-of-distribution datasets. Results demonstrate that spectral normalization improves uncertainty estimates and significantly outperforms both the layer normalization and model without normalization in single-step prediction horizons. This improved performance can be attributed to the ability of spectral normalization to better localize the feature space of the data under perturbations. Our findings are especially relevant to traffic management applications, where predicting traffic conditions across multiple locations is the goal, but the availability of training data from multiple locations is limited. Spectral normalization, therefore, provides a more generalizable approach that can effectively capture the underlying patterns in traffic data without requiring location-specific models.
We seek the best traffic allocation scheme for the edge-cloud computing network that satisfies constraints and minimizes the cost based on burstable billing. First, for a fixed network topology, we formulate a family of integer programming problems with random parameters describing the various traffic demands. Then, to overcome the difficulty caused by the discrete feature of the problem, we generalize the Gumbel-softmax reparameterization method to induce an unconstrained continuous optimization problem as a regularized continuation of the discrete problem. Finally, we introduce the Gumbel-softmax sampling network to solve the optimization problems via unsupervised learning. The network structure reflects the edge-cloud computing topology and is trained to minimize the expectation of the cost function for unconstrained continuous optimization problems. The trained network works as an efficient traffic allocation scheme sampler, remarkably outperforming the random strategy in feasibility and cost function value. Besides testing the quality of the output allocation scheme, we examine the generalization property of the network by increasing the time steps and the number of users. We also feed the solution to existing integer optimization solvers as initial conditions and verify the warm-starts can accelerate the short-time iteration process. The framework is general with solid performance, and the decoupled feature of the random neural networks is adequate for practical implementations.
Medical image segmentation requires consensus ground truth segmentations to be derived from multiple expert annotations. A novel approach is proposed that obtains consensus segmentations from experts using graph cuts (GC) and semi supervised learning (SSL). Popular approaches use iterative Expectation Maximization (EM) to estimate the final annotation and quantify annotator's performance. Such techniques pose the risk of getting trapped in local minima. We propose a self consistency (SC) score to quantify annotator consistency using low level image features. SSL is used to predict missing annotations by considering global features and local image consistency. The SC score also serves as the penalty cost in a second order Markov random field (MRF) cost function optimized using graph cuts to derive the final consensus label. Graph cut obtains a global maximum without an iterative procedure. Experimental results on synthetic images, real data of Crohn's disease patients and retinal images show our final segmentation to be accurate and more consistent than competing methods.
In this paper, we propose a novel multi-task learning architecture, which incorporates recent advances in attention mechanisms. Our approach, the Multi-Task Attention Network (MTAN), consists of a single shared network containing a global feature pool, together with task-specific soft-attention modules, which are trainable in an end-to-end manner. These attention modules allow for learning of task-specific features from the global pool, whilst simultaneously allowing for features to be shared across different tasks. The architecture can be built upon any feed-forward neural network, is simple to implement, and is parameter efficient. Experiments on the CityScapes dataset show that our method outperforms several baselines in both single-task and multi-task learning, and is also more robust to the various weighting schemes in the multi-task loss function. We further explore the effectiveness of our method through experiments over a range of task complexities, and show how our method scales well with task complexity compared to baselines.