亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We characterize the strength, in terms of Weihrauch degrees, of certain problems related to Ramsey-like theorems concerning colourings of the rationals and of the natural numbers. The theorems we are chiefly interested in assert the existence of almost-homogeneous sets for colourings of pairs of rationals respectively natural numbers satisfying properties determined by some additional algebraic structure on the set of colours. In the context of reverse mathematics, most of the principles we study are equivalent to $\Sigma^0_2$-induction over $\mathrm{RCA}_0$. The associated problems in the Weihrauch lattice are related to $\mathrm{TC}_\mathbb{N}^*$, $(\mathrm{LPO}')^*$ or their product, depending on their precise formalizations.

相關內容

迄今為止,產品設計師最友好的交互動畫軟件。

In many scientific disciplines, the features of interest cannot be observed directly, so must instead be inferred from observed behaviour. Latent variable analyses are increasingly employed to systematise these inferences, and Principal Components Analysis (PCA) is perhaps the simplest and most popular of these methods. Here, we examine how the assumptions that we are prepared to entertain, about the latent variable system, mediate the likelihood that PCA-derived components will capture the true sources of variance underlying data. As expected, we find that this likelihood is excellent in the best case, and robust to empirically reasonable levels of measurement noise, but best-case performance is also: (a) not robust to violations of the method's more prominent assumptions, of linearity and orthogonality; and also (b) requires that other subtler assumptions be made, such as that the latent variables should have varying importance, and that weights relating latent variables to observed data have zero mean. Neither variance explained, nor replication in independent samples, could reliably predict which (if any) PCA-derived components will capture true sources of variance in data. We conclude by describing a procedure to fit these inferences more directly to empirical data, and use it to find that components derived via PCA from two different empirical neuropsychological datasets, are less likely to have meaningful referents in the brain than we hoped.

Recently, a data-driven Bahl-Cocke-Jelinek-Raviv (BCJR) algorithm tailored to channels with intersymbol interference has been introduced. This so-called BCJRNet algorithm utilizes neural networks to calculate channel likelihoods. BCJRNet has demonstrated resilience against inaccurate channel tap estimations when applied to a time-invariant channel with ideal exponential decay profiles. However, its generalization capabilities for practically-relevant time-varying channels, where the receiver can only access incorrect channel parameters, remain largely unexplored. The primary contribution of this paper is to expand upon the results from existing literature to encompass a variety of imperfect channel knowledge cases that appear in real-world transmissions. Our findings demonstrate that BCJRNet significantly outperforms the conventional BCJR algorithm for stationary transmission scenarios when learning from noisy channel data and with imperfect channel decay profiles. However, this advantage is shown to diminish when the operating channel is also rapidly time-varying. Our results also show the importance of memory assumptions for conventional BCJR and BCJRNet. An underestimation of the memory largely degrades the performance of both BCJR and BCJRNet, especially in a slow-decaying channel. To mimic a situation closer to a practical scenario, we also combined channel tap uncertainty with imperfect channel memory knowledge. Somewhat surprisingly, our results revealed improved performance when employing the conventional BCJR with an underestimated memory assumption. BCJRNet, on the other hand, showed a consistent performance improvement as the level of accurate memory knowledge increased.

The Skolem problem is a long-standing open problem in linear dynamical systems: can a linear recurrence sequence (LRS) ever reach 0 from a given initial configuration? Similarly, the positivity problem asks whether the LRS stays positive from an initial configuration. Deciding Skolem (or positivity) has been open for half a century: the best known decidability results are for LRS with special properties (e.g., low order recurrences). But these problems are easier for "uninitialized" variants, where the initial configuration is not fixed but can vary arbitrarily: checking if there is an initial configuration from which the LRS stays positive can be decided in polynomial time (Tiwari in 2004, Braverman in 2006). In this paper, we consider problems that lie between the initialized and uninitialized variant. More precisely, we ask if 0 (resp. negative numbers) can be avoided from every initial configuration in a neighborhood of a given initial configuration. This can be considered as a robust variant of the Skolem (resp. positivity) problem. We show that these problems lie at the frontier of decidability: if the neighbourhood is given as part of the input, then robust Skolem and robust positivity are Diophantine hard, i.e., solving either would entail major breakthrough in Diophantine approximations, as happens for (non-robust) positivity. However, if one asks whether such a neighbourhood exists, then the problems turn out to be decidable with PSPACE complexity. Our techniques also allow us to tackle robustness for ultimate positivity, which asks whether there is a bound on the number of steps after which the LRS remains positive. There are two variants depending on whether we ask for a "uniform" bound on this number of steps. For the non-uniform variant, when the neighbourhood is open, the problem turns out to be tractable, even when the neighbourhood is given as input.

The textbook proofs of Commoner's theorem characterizing liveness in free-choice Petri nets are given in contexts of technical notions and claims that make the proofs look a bit long. The aim of this note is to give a concise self-contained proof.

When using ordinal patterns, which describe the ordinal structure within a data vector, the problem of ties appeared permanently. So far, model classes were used which do not allow for ties; randomization has been another attempt to overcome this problem. Often, time periods with constant values even have been counted as times of monotone increase. To overcome this, a new approach is proposed: it explicitly allows for ties and, hence, considers more patterns than before. Ties are no longer seen as nuisance, but to carry valuable information. Limit theorems in the new framework are provided, both, for a single time series and for the dependence between two time series. The methods are used on hydrological data sets. It is common to distinguish five flood classes (plus 'absence of flood'). Considering data vectors of these classes at a certain gauge in a river basin, one will usually encounter several ties. Co-monotonic behavior between the data sets of two gauges (increasing, constant, decreasing) can be detected by the method as well as spatial patterns. Thus, it helps to analyze the strength of dependence between different gauges in an intuitive way. This knowledge can be used to asses risk and to plan future construction projects.

Various static analysis problems are reformulated as instances of the Context-Free Language Reachability (CFL-r) problem. One promising way to make solving CFL-r more practical for large-scale interprocedural graphs is to reduce CFL-r to linear algebra operations on sparse matrices, as they are efficiently executed on modern hardware. In this work, we present five optimizations for a matrix-based CFL-r algorithm that utilize the specific properties of both the underlying semiring and the widely-used linear algebra library SuiteSparse:GraphBlas. Our experimental results show that these optimizations result in orders of magnitude speedup, with the optimized matrix-based CFL-r algorithm consistently outperforming state-of-the-art CFL-r solvers across four considered static analyses.

We study sets of mutually orthogonal Latin rectangles (MOLR), and a natural variation of the concept of self-orthogonal Latin squares which is applicable on larger sets of mutually orthogonal Latin squares and MOLR, namely that each Latin rectangle in a set of MOLR is isotopic to each other rectangle in the set. We call such a set of MOLR \emph{homogeneous}. In the course of doing this, we perform a complete enumeration of non-isotopic sets of $t$ mutually orthogonal $k\times n$ Latin rectangles for $k\leq n \leq 7$, for all $t < n$. Specifically, we keep track of homogeneous sets of MOLR, as well as sets of MOLR where the autotopism group acts transitively on the rectangles, and we call such sets of MOLR \emph{transitive}. We build the sets of MOLR row by row, and in this process we also keep track of which of the MOLR are homogeneous and/or transitive in each step of the construction process. We use the prefix \emph{stepwise} to refer to sets of MOLR with this property. Sets of MOLR are connected to other discrete objects, notably finite geometries and certain regular graphs. Here we observe that all projective planes of order at most 9 except the Hughes plane can be constructed from a stepwise transitive MOLR.

Despite their popularity in non-English NLP, multilingual language models often underperform monolingual ones due to inter-language competition for model parameters. We propose Cross-lingual Expert Language Models (X-ELM), which mitigate this competition by independently training language models on subsets of the multilingual corpus. This process specializes X-ELMs to different languages while remaining effective as a multilingual ensemble. Our experiments show that when given the same compute budget, X-ELM outperforms jointly trained multilingual models across all considered languages and that these gains transfer to downstream tasks. X-ELM provides additional benefits over performance improvements: new experts can be iteratively added, adapting X-ELM to new languages without catastrophic forgetting. Furthermore, training is asynchronous, reducing the hardware requirements for multilingual training and democratizing multilingual modeling.

We propose the algorithm that solves the symmetric cone programs (SCPs) by iteratively calling the projection and rescaling methods the algorithms for solving exceptional cases of SCP. Although our algorithm can solve SCPs by itself, we propose it intending to use it as a post-processing step for interior point methods since it can solve the problems more efficiently by using an approximate optimal (interior feasible) solution. We also conduct numerical experiments to see the numerical performance of the proposed algorithm when used as a post-processing step of the solvers implementing interior point methods, using several instances where the symmetric cone is given by a direct product of positive semidefinite cones. Numerical results show that our algorithm can obtain approximate optimal solutions more accurately than the solvers. When at least one of the primal and dual problems did not have an interior feasible solution, the performance of our algorithm was slightly reduced in terms of optimality. However, our algorithm stably returned more accurate solutions than the solvers when the primal and dual problems had interior feasible solutions.

Emotion recognition in conversation (ERC) aims to detect the emotion label for each utterance. Motivated by recent studies which have proven that feeding training examples in a meaningful order rather than considering them randomly can boost the performance of models, we propose an ERC-oriented hybrid curriculum learning framework. Our framework consists of two curricula: (1) conversation-level curriculum (CC); and (2) utterance-level curriculum (UC). In CC, we construct a difficulty measurer based on "emotion shift" frequency within a conversation, then the conversations are scheduled in an "easy to hard" schema according to the difficulty score returned by the difficulty measurer. For UC, it is implemented from an emotion-similarity perspective, which progressively strengthens the model's ability in identifying the confusing emotions. With the proposed model-agnostic hybrid curriculum learning strategy, we observe significant performance boosts over a wide range of existing ERC models and we are able to achieve new state-of-the-art results on four public ERC datasets.

北京阿比特科技有限公司