亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Existing protocols for byzantine fault tolerant distributed systems usually rely on the correct agents' ability to detect faulty agents and/or to detect the occurrence of some event or action on some correct agent. In this paper, we provide sufficient conditions that allow an agent to infer the appropriate beliefs from its history, and a procedure that allows these conditions to be checked in finite time. Our results thus provide essential stepping stones for developing efficient protocols and proving them correct.

相關內容

The dynamics of affective decision making is considered for an intelligent network composed of agents with different types of memory: long-term and short-term memory. The consideration is based on probabilistic affective decision theory, which takes into account the rational utility of alternatives as well as the emotional alternative attractiveness. The objective of this paper is the comparison of two multistep operational algorithms of the intelligent network: one based on discrete dynamics and the other on continuous dynamics. By means of numerical analysis, it is shown that, depending on the network parameters, the characteristic probabilities for continuous and discrete operations can exhibit either close or drastically different behavior. Thus, depending on which algorithm is employed, either discrete or continuous, theoretical predictions can be rather different, which does not allow for a uniquely defined description of practical problems. This finding is important for understanding which of the algorithms is more appropriate for the correct analysis of decision-making tasks. A discussion is given, revealing that the discrete operation seems to be more realistic for describing intelligent networks as well as affective artificial intelligence.

Pairs trading is a family of trading techniques that determine their policies based on monitoring the relationships between pairs of assets. A common pairs trading approach relies on describing the pair-wise relationship as a linear Space State (SS) model with Gaussian noise. This representation facilitates extracting financial indicators with low complexity and latency using a Kalman Filter (KF), that are then processed using classic policies such as Bollinger Bands (BB). However, such SS models are inherently approximated and mismatched, often degrading the revenue. In this work, we propose KalmenNet-aided Bollinger bands Pairs Trading (KBPT), a deep learning aided policy that augments the operation of KF-aided BB trading. KBPT is designed by formulating an extended SS model for pairs trading that approximates their relationship as holding partial co-integration. This SS model is utilized by a trading policy that augments KF-BB trading with a dedicated neural network based on the KalmanNet architecture. The resulting KBPT is trained in a two-stage manner which first tunes the tracking algorithm in an unsupervised manner independently of the trading task, followed by its adaptation to track the financial indicators to maximize revenue while approximating BB with a differentiable mapping. KBPT thus leverages data to overcome the approximated nature of the SS model, converting the KF-BB policy into a trainable model. We empirically demonstrate that our proposed KBPT systematically yields improved revenue compared with model-based and data-driven benchmarks over various different assets.

Accurate traffic forecasting at intersections governed by intelligent traffic signals is critical for the advancement of an effective intelligent traffic signal control system. However, due to the irregular traffic time series produced by intelligent intersections, the traffic forecasting task becomes much more intractable and imposes three major new challenges: 1) asynchronous spatial dependency, 2) irregular temporal dependency among traffic data, and 3) variable-length sequence to be predicted, which severely impede the performance of current traffic forecasting methods. To this end, we propose an Asynchronous Spatio-tEmporal graph convolutional nEtwoRk (ASeer) to predict the traffic states of the lanes entering intelligent intersections in a future time window. Specifically, by linking lanes via a traffic diffusion graph, we first propose an Asynchronous Graph Diffusion Network to model the asynchronous spatial dependency between the time-misaligned traffic state measurements of lanes. After that, to capture the temporal dependency within irregular traffic state sequence, a learnable personalized time encoding is devised to embed the continuous time for each lane. Then we propose a Transformable Time-aware Convolution Network that learns meta-filters to derive time-aware convolution filters with transformable filter sizes for efficient temporal convolution on the irregular sequence. Furthermore, a Semi-Autoregressive Prediction Network consisting of a state evolution unit and a semiautoregressive predictor is designed to effectively and efficiently predict variable-length traffic state sequences. Extensive experiments on two real-world datasets demonstrate the effectiveness of ASeer in six metrics.

Pneumonia remains a significant cause of child mortality, particularly in developing countries where resources and expertise are limited. The automated detection of Pneumonia can greatly assist in addressing this challenge. In this research, an XOR based Particle Swarm Optimization (PSO) is proposed to select deep features from the second last layer of a RegNet model, aiming to improve the accuracy of the CNN model on Pneumonia detection. The proposed XOR PSO algorithm offers simplicity by incorporating just one hyperparameter for initialization, and each iteration requires minimal computation time. Moreover, it achieves a balance between exploration and exploitation, leading to convergence on a suitable solution. By extracting 163 features, an impressive accuracy level of 98% was attained which demonstrates comparable accuracy to previous PSO-based methods. The source code of the proposed method is available in the GitHub repository.

We propose augmenting the empathetic capacities of social robots by integrating non-verbal cues. Our primary contribution is the design and labeling of four types of empathetic non-verbal cues, abbreviated as SAFE: Speech, Action (gesture), Facial expression, and Emotion, in a social robot. These cues are generated using a Large Language Model (LLM). We developed an LLM-based conversational system for the robot and assessed its alignment with social cues as defined by human counselors. Preliminary results show distinct patterns in the robot's responses, such as a preference for calm and positive social emotions like 'joy' and 'lively', and frequent nodding gestures. Despite these tendencies, our approach has led to the development of a social robot capable of context-aware and more authentic interactions. Our work lays the groundwork for future studies on human-robot interactions, emphasizing the essential role of both verbal and non-verbal cues in creating social and empathetic robots.

Unsignalized intersections are typically considered as one of the most representative and challenging scenarios for self-driving vehicles. To tackle autonomous driving problems in such scenarios, this paper proposes a curriculum proximal policy optimization (CPPO) framework with stage-decaying clipping. By adjusting the clipping parameter during different stages of training through proximal policy optimization (PPO), the vehicle can first rapidly search for an approximate optimal policy or its neighborhood with a large parameter, and then converges to the optimal policy with a small one. Particularly, the stage-based curriculum learning technology is incorporated into the proposed framework to improve the generalization performance and further accelerate the training process. Moreover, the reward function is specially designed in view of different curriculum settings. A series of comparative experiments are conducted in intersection-crossing scenarios with bi-lane carriageways to verify the effectiveness of the proposed CPPO method. The results show that the proposed approach demonstrates better adaptiveness to different dynamic and complex environments, as well as faster training speed over baseline methods.

The assessment of the well-being of the peripheral auditory nerve system in individuals experiencing hearing impairment is conducted through auditory brainstem response (ABR) testing. Audiologists assess and document the results of the ABR test. They interpret the findings and assign labels to them using reference-based markers like peak latency, waveform morphology, amplitude, and other relevant factors. Inaccurate assessment of ABR tests may lead to incorrect judgments regarding the integrity of the auditory nerve system; therefore, proper Hearing Loss (HL) diagnosis and analysis are essential. To identify and assess ABR automation while decreasing the possibility of human error, machine learning methods, notably deep learning, may be an appropriate option. To address these issues, this study proposed deep-learning models using the transfer-learning (TL) approach to extract features from ABR testing and diagnose HL using support vector machines (SVM). Pre-trained convolutional neural network (CNN) architectures like AlexNet, DenseNet, GoogleNet, InceptionResNetV2, InceptionV3, MobileNetV2, NASNetMobile, ResNet18, ResNet50, ResNet101, ShuffleNet, and SqueezeNet are used to extract features from the collected ABR reported images dataset in the proposed model. It has been decided to use six measures accuracy, precision, recall, geometric mean (GM), standard deviation (SD), and area under the ROC curve to measure the effectiveness of the proposed model. According to experimental findings, the ShuffleNet and ResNet50 models' TL is effective for ABR to diagnose HL using an SVM classifier, with a high accuracy rate of 95% when using the 5-fold cross-validation method.

Human intelligence thrives on the concept of cognitive synergy, where collaboration and information integration among different cognitive processes yield superior outcomes compared to individual cognitive processes in isolation. Although Large Language Models (LLMs) have demonstrated promising performance as general task-solving agents, they still struggle with tasks that require intensive domain knowledge and complex reasoning. In this work, we propose Solo Performance Prompting (SPP), which transforms a single LLM into a cognitive synergist by engaging in multi-turn self-collaboration with multiple personas. A cognitive synergist refers to an intelligent agent that collaborates with multiple minds, combining their individual strengths and knowledge, to enhance problem-solving and overall performance in complex tasks. By dynamically identifying and simulating different personas based on task inputs, SPP unleashes the potential of cognitive synergy in LLMs. We have discovered that assigning multiple, fine-grained personas in LLMs elicits better problem-solving abilities compared to using a single or fixed number of personas. We evaluate SPP on three challenging tasks: Trivia Creative Writing, Codenames Collaborative, and Logic Grid Puzzle, encompassing both knowledge-intensive and reasoning-intensive types. Unlike previous works, such as Chain-of-Thought, that solely enhance the reasoning abilities in LLMs, SPP effectively elicits internal knowledge acquisition abilities, reduces hallucination, and maintains strong reasoning capabilities. Code, data, and prompts can be found at: //github.com/MikeWangWZHL/Solo-Performance-Prompting.git.

Inspired by the human cognitive system, attention is a mechanism that imitates the human cognitive awareness about specific information, amplifying critical details to focus more on the essential aspects of data. Deep learning has employed attention to boost performance for many applications. Interestingly, the same attention design can suit processing different data modalities and can easily be incorporated into large networks. Furthermore, multiple complementary attention mechanisms can be incorporated in one network. Hence, attention techniques have become extremely attractive. However, the literature lacks a comprehensive survey specific to attention techniques to guide researchers in employing attention in their deep models. Note that, besides being demanding in terms of training data and computational resources, transformers only cover a single category in self-attention out of the many categories available. We fill this gap and provide an in-depth survey of 50 attention techniques categorizing them by their most prominent features. We initiate our discussion by introducing the fundamental concepts behind the success of attention mechanism. Next, we furnish some essentials such as the strengths and limitations of each attention category, describe their fundamental building blocks, basic formulations with primary usage, and applications specifically for computer vision. We also discuss the challenges and open questions related to attention mechanism in general. Finally, we recommend possible future research directions for deep attention.

Detecting carried objects is one of the requirements for developing systems to reason about activities involving people and objects. We present an approach to detect carried objects from a single video frame with a novel method that incorporates features from multiple scales. Initially, a foreground mask in a video frame is segmented into multi-scale superpixels. Then the human-like regions in the segmented area are identified by matching a set of extracted features from superpixels against learned features in a codebook. A carried object probability map is generated using the complement of the matching probabilities of superpixels to human-like regions and background information. A group of superpixels with high carried object probability and strong edge support is then merged to obtain the shape of the carried object. We applied our method to two challenging datasets, and results show that our method is competitive with or better than the state-of-the-art.

北京阿比特科技有限公司